

Division 1

Division 1
Carryless Square Root ... 3
Computer Cache ... 4
Elven Efficiency ... 6
Swap Free ... 8
Fixed Point Permutations 10
Interstellar Travel ... 11
Jumping Path .. 13
Levenshtein Distance .. 16
Maze Connect ... 17
One of Each .. 19
Windmill Pivot .. 20

Hosted by:

College of Charleston
Florida International University

Kennesaw State University
University of West Florida

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 3

Carryless Square Root
Time limit: 1 second

Carryless addition is the same as normal addition, except any carries are ignored (in base 10). Thus,
37 + 48 is 75, not 85.

Carryless multiplication is performed using the schoolbook algorithm for multiplication, column by
column, but the intermediate sums are calculated using carryless addition. Thus:

9 ∙ 1234 = 9000 + (900 + 900) + (90 + 90 + 90) + (9 + 9 + 9 + 9)
= 9000 + 800 + 70 + 6 = 9876

90 ∙ 1234 = 98760

99 ∙ 1234 = 98760 + 9876 = 97536

Formally, define 𝑐 to be the 𝑘 digit of the value 𝑐. If 𝑐 = 𝑎 ∙ 𝑏 then

𝑐 = 𝑎 ∙ 𝑏 𝑚𝑜𝑑 10

Given an integer 𝒏, calculate the smallest positive integer 𝒂 such that 𝒂 ∙ 𝒂 = 𝒏 in carryless
multiplication.

Input
The input consists of a single line with an integer 𝒏 (1 ≤ 𝒏 ≤ 10).

Output
Output the smallest positive integer that is a carryless square root of the input number, or −1 if no such
number exists.

Sample Input Sample Output
6

4

149

17

123476544

11112

15

-1

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 4

Computer Cache
Time limit: 5 seconds

Your computer has a cache consisting of 𝒏 different addresses, indexed from 1 to 𝒏. Each address can
contain a single byte. Initially all cache bytes start off with the value zero.

You have 𝒎 different pieces of data you want to store. Each piece of data is a byte array. The pieces of
data may have different lengths, and any particular piece of data may be stored multiple times at
different locations.

You are going to do 𝒒 operations on your computer. There are three types of operations:

1 𝒊 𝒑 Load piece of data 𝒊 starting at position 𝒑 in the cache. This overwrites any previously stored
value in the cache. It is guaranteed that this is a valid operation (i.e., the data will not go
beyond the end of the cache). It is possible for multiple versions of some data to be loaded in
multiple positions of the cache at once.

2 𝒑 Print the byte that is stored in cache address 𝒑.

3 𝒊 𝒍 𝒓 Increment the 𝒍 through 𝒓 bytes in the 𝒊 piece of data. Since these are bytes, you must
increment modulo 256. This does not affect values that are already loaded in the cache. It
only affects the piece of data, and future loads of the piece of data.

Input
The first line of input contains three integers 𝒏, 𝒎 and 𝒒 (1 ≤ 𝒏, 𝒎, 𝒒 ≤ 5 ∙ 10), where 𝒏 is the size of
the computer’s cache, 𝒎 is the number of pieces of data, and 𝒒 is the number of operations.

Each of the next 𝒎 lines describes a piece of data, as a sequence of space separated integers. The first
integer on the line, 𝒌𝒊 (1 ≤ 𝒌𝒊,∑ 𝒌𝒊 ≤ 5 ∙ 10), indicates the number of integers to follow. Each of the
next 𝒌𝒊 integers 𝒙 (0 ≤ 𝒙 ≤ 255) are the contents of the piece of data.

Each of the next 𝒒 lines will have two, three, or four space-separated integers representing an
operation, in order, as described above. Either:

1 𝒊 𝒑 or 2 𝒑 or 3 𝒊 𝒍 𝒓

With (1 ≤ 𝒊 ≤ 𝒎), (1 ≤ 𝒑 ≤ 𝒏), and (1 ≤ 𝒍 ≤ 𝒓 ≤ 𝒌𝒊). There is guaranteed to be at least one 2
operation.

Output
For each 2 operation, output the integer value of cache location 𝒑, one per line.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 5

Sample Input

Sample Output

5 2 10
3 255 0 15
4 1 2 1 3
2 1
1 2 2
1 1 1
2 1
2 4
3 1 1 2
2 1
1 1 2
2 2
2 5

0
255
1
255
0
3

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 6

Elven Efficiency
Time limit: 5 seconds

Like many creatures featured in programming problems, the animals of the forest love playing games
with stones. They recently came up with a game to teach the younger animals about divisibility. In this
game, each animal starts with a pile of stones. At the start of the game, a series of numbers is called out.
For each number that is called, every animal whose number of stones is divisible by the called number
scores a point. At the end of the game, the animal with the most points wins.

Emma the forest elf has watched the forest animals play this game many times, and has grown tired of
watching the winning animal gloat about how many points they scored. To prevent this from happening,
she plans to meddle in the next game the animals play to ensure that no animal scores any points. She
plans to wait atop a nearby tree, and keep track of how many stones each animal has. Each round, if an
animal is about to score a point, she can toss a stone into that animal's pile, increasing their number of
stones by one. The tossed stone stays in that pile for the rest of the game. Throughout the course of the
game, she may need to toss several stones into the same pile. But stones are heavy, and she wants to
carry as few as possible to the top of her hideout tree. She already knows how many stones each of the
𝒏 animals will start with, as well as the number to be called out in each of the 𝒎 rounds of the game,
but she wants you to calculate the minimum total number of stones she will have to throw to ensure
that no animal scores any points.

Input
The first line of input contains two space-separated integers 𝒏 and 𝒎 (1 ≤ 𝒏, 𝒎 ≤ 10), where 𝒏 is the
number of animals, and 𝒎 is the number of rounds of the game.

Each of the next 𝒏 lines contain a single integer 𝒂 (1 ≤ 𝒂 ≤ 3 ∙ 10), which are the numbers of stones
held by each animal.

Each of the next 𝒎 lines contain a single integer 𝒌 (2 ≤ 𝒌 ≤ 3 ∙ 10), which are the numbers called out,
in order.

Output
Output a single integer, which is the minimum number of stones that Emma must use to prevent any
and all animals from scoring any points.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 7

Sample Input

Sample Output

3 5
10
11
12
2
11
4
13
2

12

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 8

Swap Free
Time limit: 1 second

A set of words is called swap free if there is no way to turn any word in the set into any other word in
the set by swapping only a single pair of (not necessarily adjacent) letters.

You are given a set of 𝒏 words that are all anagrams of each other. There are no duplicate letters in any
word. Find the size of the largest swap free subset of the given set. Note that it is possible for the
largest swap free subset of the given set to be the set itself.

Input
The first line of input contains a single integer 𝒏 (1 ≤ 𝒏 ≤ 500).

Each of the next 𝒏 lines contains a single word 𝒘 (1 ≤ |𝒘| ≤ 26).

Every word contains only lower-case letters and no duplicate letters. All 𝒏 words are unique, and every
word is an anagram of every other word.

Output
Output a single integer, which is the size of the largest swap free subset.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 9

Sample Input Sample Output
6
abc
acb
cab
cba
bac
bca

3

11
alerts
alters
artels
estral
laster
ratels
salter
slater
staler
stelar
talers

8

6
ates
east
eats
etas
sate
teas

4

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 10

Fixed Point Permutations
Time limit: 1 second

A permutation of size 𝒏 is a list of integers (𝑝 , 𝑝 , … , 𝑝) from 1 to 𝒏 such that each number appears
exactly once.

The number of fixed points of a permutation is the number of indices 𝒊 such that 𝑝𝒊 = 𝒊.

Given three numbers 𝒏, 𝒎, and 𝒌, find the 𝒌 lexicographically smallest permutation of size 𝒏 that has
exactly 𝒎 fixed points (or print -1 if there are fewer than 𝒌 permutations that satisfy the condition).

Input
The single line of input contains three space-separated integers

𝒏 (1 ≤ 𝒏 ≤ 50) 𝒎 (0 ≤ 𝒎 ≤ 𝒏) 𝒌 (1 ≤ 𝒌 ≤ 10)

where 𝒏 is the size of the permutations, 𝒎 is the number of desired fixed points, and the output should
be the 𝒌 lexicographically smallest permutation of the numbers 1 to 𝒏 that has exactly 𝒎 fixed points.

Output
Output the desired permutation on a single line as a sequence of 𝒏 space-separated integers, or output
-1 if no such permutation exists.

Sample Input Sample Output
3 1 1

1 3 2

3 2 1

-1

5 3 7

2 1 3 4 5

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 11

Interstellar Travel
Time limit: 5 seconds

You are planning to travel in interstellar space in hope of finding habitable planets. You have already
identified 𝒏 stars that can recharge your spaceship via its solar panels. The only work left is to decide the
orientation of the spaceship that maximizes the distance it can travel.

Space is modeled as a 2D plane, with the Earth at the origin. The spaceship can be launched from the
Earth in a straight line, in any direction. A star can provide enough energy to travel a certain distance if
the spaceship is launched at a certain angle with the 𝑋-axis. If the angle is not perfectly aligned, then the
spaceship gets less energy.

Each star has a distance 𝒕 that the spaceship can travel if launched at an angle 𝒂 with the 𝑋-axis, and a
multiplier 𝒔 which indicates the decay of distance as angles diverge from 𝒂. if the launch direction makes
an angle of 𝒃 with the 𝑋-axis, then the spaceship gets enough energy to travel a distance of:

𝐦𝐚𝐱 (0, 𝒕 − 𝒔 ∙ 𝑑𝑖𝑠𝑡[𝒂, 𝒃])

where 𝑑𝑖𝑠𝑡[𝒂, 𝒃] is the minimum non-negative radians needed to go between angles 𝒂 and 𝒃. The total
distance that the spaceship can travel is simply the sum of the distances that each star contributes.

Find the maximum distance that the starship can travel.

Input
The first line of input contains a single integer 𝒏 (1 ≤ 𝒏 ≤ 10), which is the number of stars.

Each of the next 𝒏 lines contains three space-separated real numbers

𝒕 (0.0 < 𝒕 ≤ 1000.0) 𝒔 (0.0 ≤ 𝒔 ≤ 100.0) 𝒂 (0.0 ≤ 𝒂 < 2𝜋)

where 𝒕 is the greatest distance that star’s energy can support, 𝒔 is that star’s decay multiplier, and 𝒂 is
the best angle for achieving the greatest distance from energy from that star.

Output
Output a single real number, which is the maximum distance that the spacecraft can travel. Your answer
must be accurate to within 10 absolute or relative error.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 12

Sample Input Sample Output
2
100 1 1
100 1 1.5

199.500000

4
100 1 0.5
200 1 1
100 0.5 1.5
10 2 3

405.500000

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 13

Jumping Path
Time limit: 10 seconds

You are given a rooted tree where each vertex is labeled with a non-negative integer.

Define a Jumping Path of vertices to be a sequence of vertices 𝑣 , 𝑣 , … , 𝑣 where 𝑣 is an ancestor of 𝑣
for all 𝑖 < 𝑗. Note that 𝑣 is an ancestor of 𝑣 , but not necessarily the parent of 𝑣 (hence the
jumping part of a jumping path).

Compute two quantities:

 The length (number of vertices) of the longest jumping path where the labels of the
vertices are nondecreasing.

 The number of jumping paths of that length where the labels of the vertices are
nondecreasing.

Input
The first line of input contains an integer 𝒏 (1 ≤ 𝒏 ≤ 10), which is the number of vertices in the tree.
Vertices are numbered from 1 to 𝒏, with vertex 1 being the tree root.

Each of the next 𝒏 lines contains an integer 𝒙 (0 ≤ 𝒙 ≤ 10), which are the labels of the vertices, in
order.

Each of the next 𝒏 − 1 lines contains an integer 𝒑 (1 ≤ 𝒑 ≤ 𝒏), which are the parents of nodes 2
through 𝒏, in order.

It is guaranteed that the vertices form a single tree, i.e., they are connected and acyclic.

Output
Output a single line with two integers separated by a space.

The first integer is length of the longest jumping path where the labels of the vertices are
nondecreasing. The second integer is the number of jumping paths of that length where the labels of
the vertices are nondecreasing. As the second integer may be large, give its value modulo 11092019.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 14

Sample Input Sample Output Diagram
5
3
3
3
3
3
1
2
3
4

5 1

5
4
3
2
1
0
1
2
3
4

1 5

4
1
5
3
6
1
2
3

3 2

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 15

6
1
2
3
4
5
6
1
1
1
1
1

2 5

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 16

Levenshtein Distance
Time limit: 1 second

The Levenshtein Distance between two strings is the smallest number of simple one-letter operations
needed to change one string to the other. The operations are:

 Adding a letter anywhere in the string.
 Removing a letter from anywhere in the string.
 Changing any letter in the string to any other letter.

Given a specific alphabet and a particular query string, find all other unique strings from that alphabet
that are at a Levenshtein Distance of 1 from the given string, and list them in alphabetical order, with no
duplicates.

Note that the query string must not be in the list. Its Levenshtein Distance from itself is 0, not 1.

Input
Input consists of exactly two lines. The first line of input contains a sequence of unique lower-case
letters, in alphabetical order, with no spaces between them. This is the alphabet to use.

The second line contains a string 𝒔 (2 ≤ |𝒔| ≤ 100), which consists only of lower-case letters from the
given alphabet. This is the query string.

Output
Output a list, in alphabetical order, of all strings which are a Levenshtein Distance of 1 from the query
string 𝒔. Output one word per line, with no duplicates.

Sample Input Sample Output
eg
egg

eeg
eegg
eg
ege
egeg
egge
eggg
gegg
gg
ggg

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 17

Maze Connect
Time limit: 5 seconds

Given an orthogonal maze rotated 45 degrees and drawn with ASCII forward and backward slash
characters (see below), determine the minimum number of walls that need to be removed to ensure it is
possible to escape out of the (possibly disconnected) maze from every cell without going through a wall.

/\
\/

The above maze has only a single cell fully enclosed. Removing any wall will provide an escape route to
the outside.

/\..
\.\.
.\/\
..\/

The above maze has two enclosed areas. Two walls need to be removed to connect all cells to the
outside.

/\/\/\/\/\/\/\/\/\/\
\../\.\/./././\/\/\/
/./\.././\/\.\/\/\/\
\/\/\.\/\/./\/..\../
/\/./\/\/./..\/\/..\
\.\.././\.\/\/./\.\/
/.../\../..\/./.../\
\/\/\/\/\/\/\/\/\/\/

To make every cell in the above maze accessible from the outside, 26 walls need to be removed.

Input
The first line of input contains two numbers, 𝒓 and 𝒄 (1 ≤ 𝒓, 𝒄 ≤ 1000), which are the number of rows
(𝒓) and columns (𝒄) in the maze.

Each of the next 𝒓 lines contains a string with exactly 𝒄 characters, consisting of ‘.’, ‘/’, or ‘\’ only.

Define an odd (even) square in the grid of characters as one where the sum of the 𝒙 and 𝒚 coordinates
is odd (even). Either all forward slashes will be in the odd squares and all backwards slashes in the even
squares, or vice versa.

Output
Output a single integer, which is the least number of walls that need to be removed so that escape is
possible from every cell in the maze.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 18

Sample Input Sample Output
2 2
/\
\/

1

4 4
/\..
\.\.
.\/\
..\/

2

2 2
\/
/\

0

8 20
/\/\/\/\/\/\/\/\/\/\
\../\.\/./././\/\/\/
/./\.././\/\.\/\/\/\
\/\/\.\/\/./\/..\../
/\/./\/\/./..\/\/..\
\.\.././\.\/\/./\.\/
/.../\../..\/./.../\
\/\/\/\/\/\/\/\/\/\/

26

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 19

One of Each
Time limit: 2 seconds

You are given a sequence of 𝒏 integers 𝑿 = [𝒙 , 𝒙 , … , 𝒙] and an integer 𝒌. It is guaranteed that
1 ≤ 𝒙𝒊 ≤ 𝒌, and every integer from 1 to 𝒌 appears in the list 𝑿 at least once.

Find the lexicographically smallest subsequence of 𝑿 that contains each integer from 1 to 𝒌 exactly
once.

Input
The first line of input contains two integers 𝒏 and 𝒌 (1 ≤ 𝒌 ≤ 𝒏 ≤ 2 ∙ 10), where 𝒏 is the size of the
sequence, and the sequence consists only of integers from 1 to 𝒌.

Each of the next 𝒏 lines contains a single integer 𝒙 (1 ≤ 𝒙 ≤ 𝒌). These are the values of the sequence
𝑿 in order. It is guaranteed that every value from 1 to 𝒌 will appear at least once in the sequence 𝑿.

Output
Output a sequence of integers on a single line, separated by spaces. This is the lexicographically smallest
subsequence of 𝑿 that contains every value from 1 to 𝒌.

Sample Input Sample Output
6 3
3
2
1
3
1
3

2 1 3

10 5
5
4
3
2
1
4
1
1
5
5

3 2 1 4 5

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 20

Windmill Pivot
Time limit: 10 seconds

Consider a set of points 𝑃 in the plane such that no 3 points are collinear. Construct a windmill as
follows:

 Choose a point 𝑝 ∈ 𝑃 and a starting direction such that the line through 𝑝 in that
direction does not intersect any other points in 𝑃. Draw that line (Note: line, NOT ray).

 Rotate the line clockwise like a windmill about the point 𝑝 as its pivot until the line
intersects another point 𝑞 ∈ 𝑃. Designate that point 𝑞 to be the new pivot, and then
continue the rotation. This is called promoting point 𝑞.

 Continue this process until the line has rotated a full 360°, returning to its original
direction (it can be shown that the line will also return to its original position after a
360° rotation).

During this process, a given point in 𝑃 can be a pivot multiple times. Considering all possible starting
pivots and orientations, find the maximum number of times that a single point can be promoted during a
single 360° rotation of a windmill. Note that the first point is a pivot, but not promoted to be a pivot at
the start.

Input
The first line of input contains a single integer 𝒏 (2 ≤ 𝒏 ≤ 2000), which is the number of points 𝑝 ∈ 𝑃.

Each of the next 𝒏 lines contains two space-separated integers 𝒙 and 𝒚 (−10 ≤ 𝒙, 𝒚 ≤ 10). These are
the points. Each point will be unique, and no three points will be collinear.

Output
Output a single integer, which is the maximum number of times any point 𝑝 ∈ 𝑃 can be promoted,
considering a full 360° rotation and any arbitrary starting point.

2019 ICPC SOUTHEAST USA REGIONAL PROGRAMMING CONTEST 21

Sample Input Sample Output
3
-1 0
1 0
0 2

2

6
0 0
5 0
0 5
5 5
1 2
4 2

3

