Borders: The Problem

- Consider a black and white image, where every pixel has a value of either 0 or 1.
- Define a region of the image as a collection of pixels that all have the same value, and are interconnected.
- You need to make sure every region has a border.
- What's the minimum number of regions you must draw a border around to ensure that every region has a border?

$$
\begin{array}{|lll|}
\hline 0 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline 0 & 0 & 0
\end{array}=3 \quad \left\lvert\, \begin{array}{lll|}
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\hline
\end{array}=1 \quad \begin{array}{|l|l|l|}
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 0 & 1 & 0 \\
\hline
\end{array}=8\right.
$$

Borders: Solution

- Firstly, every region on the edge must have its border drawn - There's no other way to get the outside edge borders
- For the inside, form a graph
- Every region is a node
- There's an edge between nodes if their regions need a border between them
- Now, the problem is Vertex Cover
- i.e., minimum number of nodes to cover all edges
- Vertex Cover is NP-Complete in general, BUT this is a Bipartite Graph!
- 0-region nodes, 1 -region nodes, with only edges $0 \leftrightarrow 1$, never $0 \leftrightarrow 0$ or $1 \leftrightarrow 1$
- Konig's Theorem says that you can find a Vertex Cover in a Bipartite Graph by finding a maximal matching
- So, use your favorite matching technique!

Borders: Non-Solution 1

- There are several techniques that look like they might work, but won't.
- The first of these: After handling the edges, count the number of 0 -regions, and the number of 1 -regions, and use the smaller of the two.

0	0	1	0	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

- In this case, after handling edges, there are 30 -regions and 31 -regions, But, the interior can be handled by drawing borders around the two large Tshaped regions. 10 edge regions +2 interior $=12$

Borders: Non-Solution 2

- How about a Greedy algorithm?
- For the interior, always choose the region with the most edges first.
$\left.\begin{array}{|lll|l|l|lllll|}\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
- In this case, the interior region with the most edges is the large 0-region.
- But, you still have to draw around all of the 1-regions to get all of the singleton 0-regions (or use the four leftmost 0-regions instead of the 4 singleton 1-regions).
- You can do the job by just drawing around the 1-regions.

