ICPC Southeast USA Regional Contest

Fixed Point Permutations

Time limit: 1 second

A permutation of size \boldsymbol{n} is a list of integers $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ from 1 to \boldsymbol{n} such that each number appears exactly once.

The number of fixed points of a permutation is the number of indices \boldsymbol{i} such that $p_{\boldsymbol{i}}=\boldsymbol{i}$.
Given three numbers $\boldsymbol{n}, \boldsymbol{m}$, and \boldsymbol{k}, find the $\boldsymbol{k}^{\text {th }}$ lexicographically smallest permutation of size \boldsymbol{n} that has exactly \boldsymbol{m} fixed points (or print $\mathbf{- 1}$ if there are fewer than \boldsymbol{k} permutations that satisfy the condition).

Input

The single line of input contains three space-separated integers

$$
\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 50) \quad \boldsymbol{m}(0 \leq \boldsymbol{m} \leq \boldsymbol{n}) \quad \boldsymbol{k}\left(1 \leq \boldsymbol{k} \leq 10^{18}\right)
$$

where \boldsymbol{n} is the size of the permutations, \boldsymbol{m} is the number of desired fixed points, and the output should be the $\boldsymbol{k}^{t h}$ lexicographically smallest permutation of the numbers 1 to \boldsymbol{n} that has exactly \boldsymbol{m} fixed points.

Output

Output the desired permutation on a single line as a sequence of \boldsymbol{n} space-separated integers, or output -1 if no such permutation exists.

Sample Input	Sample Output
311	132
321	-1
537	21345

