

ICPC Southeast USA Regional Contest

Fixed Point Permutations

Time limit: 1 second

A permutation of size n is a list of integers $(p_1, p_2, ..., p_n)$ from 1 to n such that each number appears exactly once.

The number of *fixed points* of a permutation is the number of indices i such that $p_i = i$.

Given three numbers n, m, and k, find the k^{th} lexicographically smallest permutation of size n that has exactly m fixed points (or print -1 if there are fewer than k permutations that satisfy the condition).

Input

The single line of input contains three space-separated integers

 $n (1 \le n \le 50)$ $m (0 \le m \le n)$ $k (1 \le k \le 10^{18})$

where n is the size of the permutations, m is the number of desired *fixed points*, and the output should be the k^{th} lexicographically smallest permutation of the numbers 1 to n that has exactly m fixed points.

Output

Output the desired permutation on a single line as a sequence of n space-separated integers, or output -1 if no such permutation exists.

Sample Input	Sample Output
3 1 1	1 3 2
3 2 1	-1
5 3 7	2 1 3 4 5