

ICPC North America Regionals 2019 oc international collegiate programming contest

ICPC Southeast USA Regional Contest

Jumping Path

Time limit: 10 seconds

You are given a rooted tree where each vertex is labeled with a non-negative integer.

Define a Jumping Path of vertices to be a sequence of vertices $v_1, v_2, ..., v_k$ where v_i is an ancestor of v_j for all i < j. Note that v_i is an ancestor of v_{i+1} , but not necessarily the parent of v_{i+1} (hence the jumping part of a jumping path).

Compute two quantities:

- The length (number of vertices) of the longest *jumping path* where the labels of the vertices are nondecreasing.
- The number of *jumping paths* of that length where the labels of the vertices are nondecreasing.

Input

The first line of input contains an integer n ($1 \le n \le 10^6$), which is the number of vertices in the tree. Vertices are numbered from 1 to n, with vertex 1 being the tree root.

Each of the next n lines contains an integer x ($0 \le x \le 10^6$), which are the labels of the vertices, in order.

Each of the next n - 1 lines contains an integer p ($1 \le p \le n$), which are the parents of nodes 2 through n, in order.

It is guaranteed that the vertices form a single tree, i.e., they are connected and acyclic.

Output

Output a single line with two integers separated by a space.

The first integer is length of the longest *jumping path* where the labels of the vertices are nondecreasing. The second integer is the number of *jumping paths* of that length where the labels of the vertices are nondecreasing. As the second integer may be large, give its value modulo 11092019.

ICPC Southeast USA Regional Contest

Sample Input	Sample Output	Diagram
5	5 1	3 (0)
3		
3		
3		
1		(3(2))
2		•
3		3 (3)
4		$\left \begin{array}{c} \end{array} \right $
		3 (4)
5	1 5	4 (0)
4		
2		3(1)
1		
0		
1		
2		
3		
4		
		0 (4)
4	3 2	
1		
5		
3		
6		
2		(3(2))
3		
		6 (3)

ICPC Southeast USA Regional Contest

6 1	2 5	1(0)
2		
3		2(1) 3(2) 4(3) 5(4) 6(5)
5		
6		
1		
1		
1		
1		
1		