

2015 ACM ICPC

Southeast USA Regional

Programming Contest

Division 2
Blur .. 1

A Classy Problem .. 2

Egg Drop.. 4

Excellence ... 5

Grid.. 6

Hilbert Sort ... 7

The Magical 3.. 10

Persistence.. 11

Simplicity .. 12

Triangles.. 13

Xedni Drawkcab.. 14

Hosted by:

College of Charleston

Florida Institute of Technology

Georgia Institute of Technology

University of West Florid

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 14 14 November, 2015

Blur

You have a black and white image. You decide to represent this image with one number
per pixel: black is 0, and white is 1. Someone asks you to blur the image, resulting in
various shades of gray. The way you decide to blur the image is as follows: You create a
new image that is the same size as the old one, and each pixel in the new image has a

value equal to the average of the 9 pixels in the 3x3 square centered at the
corresponding old pixel. When doing this average, wrap around the edges, so the left

neighbor of a leftmost pixel is in the rightmost column, and the top neighbor of an
uppermost pixel is on the bottom. From a corner, you might wrap twice. For example,

go diagonally up and left from the top left pixel, and you end up on the bottom right.
This way, the 3x3 square always gives you exactly 9 pixels to average together. If you

want to make the image blurrier, you can take the blurred image and blur it again using
the exact same process. Given an input image and a fixed number of times to blur it,

how many distinct colors does the final image have?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains three space-separated integers
w, h, and b (3≤w,h≤100, 0≤b≤9), indicating the width w and height h of the input image,
as well as the number of times b to blur the image.

The following h lines of w space-separated integers describe the original image, with

each integer being either 0 or 1, corresponding to the color of the pixel.

Output

Output a single integer indicating the number of unique colors in the final blurred
image.

Sample Input Sample Output

5 4 1

0 0 1 1 0

0 0 1 1 0

0 0 1 1 0

0 0 1 1 0

3

3 3 2

1 0 0

0 1 0

0 1 0

1

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 14 14 November, 2015

A Classy Problem

In his memoir So, Anyway, comedian John Cleese writes of the class difference between
his father (who was `middle-middle-middle-lower-middle class' and his mother (who
was `upper-upper-lower-middle class'). These fine distinctions between classes tend to
confuse American readers, so you are to write a program to sort a group of people by
their classes to show the true distinctions.

For this problem, there are three main classes: upper, middle, and lower. Obviously, the

highest is upper and the lowest is lower. But there can be distinctions within a class, so
upper-upper is a higher class than middle-upper, which is higher than lower-upper.

However, all of the upper classes (upper-upper, middle-upper, and lower-upper) are
higher than any of the middle classes.

Within a class like middle-upper, there can be further distinctions as well, leading to
classes like lower-middle-upper-middle-upper. When comparing classes, once you've
reached the lowest level of detail, you should assume that all further classes are the
same as the middle level of the previous level of detail. So upper class and middle-upper
class are equivalent, as are middle-middle-lower-middle and lower-middle.

The Input

Each input will consist of a single test case. Note that your program may be run multiple

times on different inputs. The first line of input contains n, the number of names to
follow. Each of the following n lines contains the name of a person as a sequence of 1 or

more lower case letters, then a colon, then a single space, and then the class of the
person. The class of the person will include one or more modifiers, separated by a single

space, followed by a single space and then the word class. The entire line will be no
longer than 256 characters.

The Output

The output will consist of a list of names from highest to lowest class , one name per
line. If two people have the same class, they should be listed in alphabetical order by
name.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 14 14 November, 2015

Sample Input Sample Output

5

mom: upper upper lower middle class

dad: middle middle lower middle class

queenelizabeth: upper upper class

chair: lower lower class

unclebob: middle lower middle class

queenelizabeth

mom

dad

unclebob

chair

10

rich: lower upper class

mona: upper upper class

dave: middle lower class

charles: middle class

tom: middle class

william: lower middle class

carl: lower class

violet: middle class

frank: lower class

mary: upper class

mona

mary

rich

charles

tom

violet

william

carl

dave

frank

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 14 14 November, 2015

Egg Drop

Suppose you are given an egg and a k-floor building, and you want to know the highest
floor from which you can drop the egg and not have it break. You have stumbled upon
some logs detailing someone trying this experiment!

Based on these logs, you need to compute two quantities: the lowest floor that you can

drop the egg where the egg could possibly break, and the highest floor that you can
drop the egg where the egg could possibly be safe. You know that the egg will not break

if dropped on floor 1, and will break if dropped on floor k. You also know that logs are
consistent; if an egg did not break when dropped from floor x, it will not break when

dropped from any lower floors, and if an egg did break when dropped from floor y, it
will break when dropped from all higher floors. Although consistent, the logs may be
incomplete, in that they might not cover all floors of the building.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n

(1≤n≤100), the number of egg drops reported, and k (3≤k≤100), the number of floors of
the building. Each of the following n lines contains a floor number f (1≤f≤k), then a
single space, and then the result of the egg drop: either SAFE or BROKEN, in all caps.

The input will be consistent, as described above.

Output

Output two space-separated positive integers on a single line. The first integer should be

the number of the lowest floor where you can drop the egg and it could possibly break
and still be consistent with the results. The second integer should be the number of the

highest floor where you can drop the egg and it could possibly not break.

Sample Input Sample Output

2 10

4 SAFE

7 BROKEN

5 6

3 5

2 SAFE

4 SAFE

3 SAFE

5 4

4 3

2 BROKEN

2 BROKEN

1 SAFE

3 BROKEN

2 1

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 14 14 November, 2015

Excellence

The World Coding Federation is setting up a huge online programming tournament of
teams comprised of pairs of programmers. Judge David is in charge of putting teams
together from the South Eastern delegation. Luckily, he has an even number of students
who desire to compete, so that he can make sure that each student does compete.
However, he'd like to maintain his pristine reputation amongst other judges by making
sure that each of the teams he fields for the competition meets some minimum total
rating. We define the total rating of a team to be the sums of the ratings of both
individuals on the team. Help David determine the maximal value, x, such that he can

form teams, each of which have a total rating greater than or equal to x. Note that every
student must be placed on exactly one team of two students .

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains a single integer n (1≤n≤105),
representing the number of students who desire to enter the online programming
tournament. It is guaranteed that n is an even number. Each of the following n lines

contains a single integer s (1≤s≤106), representing the rating of a student.

Output

Output a single integer on a line by itself representing the maximal value, x, such that
David can form teams where every team has a total rating greater than or equal to x.

Sample Input Sample Output

4

1

2

3

5

5

2

18

16

34

4

13

12

19

14

27

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 14 14 November, 2015

Grid

You are on an nxm grid where each square on the grid has a digit on it. From a given
square that has digit k on it, a Move consists of jumping exactly k squares in one of the
four cardinal directions. A move cannot go beyond the edges of the grid; it does not
wrap. What is the minimum number of moves required to get from the top-left corner
to the bottom-right corner?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n
and m (1≤n,m≤500), indicating the size of the grid. It is guaranteed that at least one of n
and m is greater than 1.

The next n lines will each consist of m digits, with no spaces, indicating the nxm grid.
Each digit is between 0 and 9, inclusive.

The top-left corner of the grid will be the square corresponding to the first character in
the first line of the test case. The bottom-right corner of the grid will be the square

corresponding to the last character in the last line of the test case.

Output

Output a single integer on a line by itself representing the minimum number of moves
required to get from the top-left corner of the grid to the bottom-right. If it isn’t
possible, output -1.

Sample Input Sample Output

2 2

11

11

2

2 2

22

22

-1

5 4

2120

1203

3113

1120

1110

6

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 14 14 November, 2015

Hilbert Sort

Sorting numerical data not only makes it easy to search for a particular item, but also
makes better use of a CPU's cache: any segment of data that's contiguous in memory

will describe a set of items that are similar in some sense. Things get more complicated
if our data represents points on a 2D grid. If points (x,y) are sorted by x, breaking ties by

y, then adjacent points will have similar x coordinates but not necessarily similar y,
potentially making them far apart. To better preserve distances, we can sort the data

along a space-filling curve.

The Hilbert curve starts at the origin (0,0), finishes at (s,0), in the process traversing
every point in axis-aligned square with corners at (0,0) and (s,s). It has the following
recursive construction: split the square into four quadrants meeting at (s/2, s/2).
Number them 1 to 4, starting at the lower left and moving clockwise. Recursively fill

each of them with a suitably rotated and scaled copy of the full Hilbert curve.

Start with a single point at (s/2,s/2). Then, repeat these steps:

 Scale and copy the current construction into each of the 4 quadrants.

 Rotate quadrant 1 by -90 degrees and flip it vertically, so that the start of the
curve is closest to the lower left corner (0,0).

 Rotate quadrant 4 by 90 degrees and flip it vertically, so that the end of the
curve is closest to the lower right corner (s,0).

 Now, connect the end of the curve in quadrant 1 to the start of the curve in
quadrant 2, connect the end of quadrant 2 to the start of quadrant 3, and the
end of quadrant 3 to the start of quadrant 4.

Here are the first two iterations:

1

2 3

4

(0,0)

(s,s)

(0,0)

(s,s)

1

2 3

4

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 14 14 November, 2015

The Hilbert Curve is built by repeating this construction infinitely many times. The

following diagram shows the first six steps of building the Hilbert Curve:

Given some places of interest inside of a square region, sort them according to when the
Hilbert curve visits them, starting from (0,0). Without going into gory detail about
Fractal theory, note that making s odd guarantees that all integer points are visited just
once, so their visitation order with relation to each other is unambiguous.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n
and s (1≤n≤100,000, 1≤s<109, s is odd). The next n lines describe locations of interest by

space-separated integers x and y (0≤x,y≤s). No two locations will share the same
position.

Output

Output the n ordered pairs, one per line, with x and y separated by a space, Hilbert-

sorted according to their positions.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 14 14 November, 2015

Sample Input Sample Output

14 25

5 5

5 10

5 20

10 5

10 10

10 15

10 20

15 5

15 10

15 15

15 20

20 5

20 10

20 20

5 5

10 5

10 10

5 10

5 20

10 20

10 15

15 15

15 20

20 20

20 10

15 10

15 5

20 5

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 14 14 November, 2015

The Magical 3

Three is a magic number.

Yes it is; it’s a magic number.

Somewhere in the ancient, mystic trinity,

You get three as a magic number.

- Schoolhouse Rock

According to Pythagoras and the Pythagorean School, the number 3 - which they called
triad - is the noblest of all digits, as it is the only positive integer to equal the sum of all

of the positive integers below it (1+2=3), and it is the only positive integer whose sum
with those below equals the product of them and itself (1+2+3=1x2x3).

Your task is to find the magic – the magic 3, that is – when it can be the last digit in a
representation of a positive integer in some base. Consider, for example, the number
11. It can be represented as ONE-THREE (13) in base 8 and as TWO-THREE (23) in base 4.
You are to write a program that will find the smallest base for a given positive integer
where the input number’s representation in that base ends in 3. This is possible for all

integers greater than 6.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with a single integer

n (7≤n<231).

Output

For each test case, output a single integer representing the smallest base in which the
input n ends with a 3.

Sample Input Sample Output

11 4

42 13

9876 3291

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 14 14 November, 2015

Persistence

Consider the series of numbers where each term is the product of the decimal digits of
the previous term. Eventually the term will be reduced to a single digit.

For example start with 679:

679: 6*7*9 378

378: 3*7*8 168

168: 1*6*8 43

48: 4*8 32

32: 3*2 6

The number of steps this takes is called the Persistence of a number. Thus, the
persistence of 679 is 5, since that’s number of steps it took to get to a single digit

number.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The input will consist of a single line, with a positive number

of up to 9 decimal digits with no leading zeros.

Output

For each test case, output a single integer, representing the persistence of the input
number; that is, the number of steps necessary to reduce it to a single digit.

Sample Input Sample Output

5 0

10 1

679 5

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 14 14 November, 2015

Simplicity

For a string of letters, define the Simplicity of the string to be the number of distinct
letters in the string. For example, the string string has simplicity 6, and the string letter
has simplicity 4.

You like strings which have simplicity either 1 or 2. Your friend has given you a string and

you want to turn it into a string that you like. You have a magic eraser which will delete
one letter from any string. Compute the minimum number of letters you must erase in

order to turn the string into a string with simplicity at most 2.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The input will consist of a line with a single string consisting of
at least 1 and at most 100 lower case letters.

Output

Output a single integer, indicating the minimum number letters you need to erase in
order to give the string a simplicity of 1 or 2.

Sample Input Sample Output

string 4

letter 2

aaaaaa 0

uncopyrightable 13

ambidextrously 12

assesses 1

assassins 2

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 14 14 November, 2015

 Triangles

Determine if it is possible to produce two triangles of given side lengths, by cutting
some rectangle with a single line segment, and freely rotating and flipping the resulting
pieces.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The input consists of two lines. The first line contains three

space-separated integers, indicating the desired side lengths of the first triangle.
Similarly, the second line contains three space-separated integers, denoting the desired
side lengths of the second triangle. It is guaranteed that the side lengths produce valid
triangles. You may assume that the maximum side length of a triangle is 100, and that
the minimum is 1.

Output

If there exists a rectangle which could have been cut to form triangles of the given side
lengths, output 1. Otherwise, output 0.

Sample Input Sample Output

3 4 5

4 3 5

1

3 4 6

4 6 3

0

39 52 65

25 60 65

0

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 14 14 November, 2015

Xedni Drawkcab

For years, before computers, Merriam Webster maintained a Backward Index of all of
the words in the English language. They had all of the words on cards, one word per
card, backwards. The cards were alphabetized. This was very useful, before computers,
to determine such things as 'How many words end with 'TION'?'

Given a list of words consisting of only capital letters, create a Backward Index by
reversing them and printing the reversals in alphabetical order.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input will contain an integer n (1≤n≤1,000)
indicating the number of words. On the following n lines will be the words, one per line.
The words will be from 1 to 100 letters long. The words will consist of only capital
letters, and there will be no spaces or blank lines.

Output

Output the words, reversed and sorted, one word per line.

Sample Input Sample Output

3

ALCATRAZ

CARDAMOM

BAKLAVA

AVALKAB

MOMADRAC

ZARTACLA

