

Division 2
Congruent Numbers ... 1

Unloaded Die .. 2

Halfway .. 3

Law 11 .. 4

Long Long Strings .. 6

Move Away .. 8

Purple Rain ... 9

Rainbow Roads ... 10

Arithmetic Sequences ... 12

Star Arrangements ... 13

Treasure Map ... 15

Hosted by:

College of Charleston

Florida International University

Kennesaw State University

University of West Florida

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 16 11 November, 2017

Congruent Numbers
A congruent number is an integer that is the area of some right triangle where the
length of each side of the triangle is a rational number. For this problem, we’ll only
consider the legs of the right triangle, and not the hypotenuse.

A rational number is a fraction, p/q, where p, the numerator, and q, the denominator,
are integers. Note that if q = 1, then p/1 is an integer, so any integer is a rational
number.

Given two rational numbers which are the non-hypotenuse legs of a right triangle,
determine if the area of that triangle is a congruent number. For the purposes of this
problem, it is not necessary for the length of the hypotenuse to be a rational number.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with four integers p1,
q1, p2 and q2 (1 ≤ p1,q1,p2,q2 ≤ 100,000) where p1/q1 and p2/q2 are the rational
numbers which are the sides of a right triangle.

Output

Output a single integer, which is 1 if the area of the triangle is an integer, 0 if not. Note
that the area has to be an integer, not just a rational number.

Sample Input Sample Output

3 1 4 1

1

15 1 28 3

1

1 2 3 4

0

1 1 10 1

1

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 16 11 November, 2017

Unloaded Die
Consider a standard six-sided die, with sides labelled 1 through 6. We consider a die to
be fair if each of its sides is equally likely to be landed on after rolling it. We consider a
die loaded if its fairness is compromised. For example, if the side marked 6 twice as
likely to come up as any other side, we are dealing with a loaded die.

For any die, define the expected value of rolling the die to be equal to the average of the
values of the sides weighted by the probability of those sides coming up. Intuitively, this
is the number you would get if you rolled the die many times and averaged all the
results together. A fair die has an expected result of 3.5. That is, since all sides are
weighed the same, they each have probability of 1/6, and we get:

1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 3.5

Suppose you are given a loaded die, and you would like to "unload" it to make it more
closely resemble a fair die. To do so, you can erase one side's label and replace it with a
new (real) number. You want to do so in such a way that

1) The expected result of rolling the die is 3.5, just like a fair die, and

2) The absolute value of difference between the old label and the new label on the

side you change is as small as possible.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with six decimal
numbers, where the ith number (i = 1..6) is the probability that the side with value i is
rolled. All of these numbers will be between 0.0 and 1.0, and they are guaranteed to
sum to 1.0.

Output

Output a single number on a single line: the absolute value of the difference between
the label you erase and the label you write in. Output this number to exactly 3 decimal
places, rounded.

Sample Input Sample Output

0.16666 0.16667 0.16667 0.16666 0.16667 0.16667

0.000

0.2 0.2 0.1 0.2 0.2 0.1

1.000

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 16 11 November, 2017

Halfway

A friend of yours has written a program that compares every pair of... something. With n
items, it works like this: First, it prints a 1, and it compares item 1 to items 2, 3, 4, ..., n.
It then prints 2, and compares item 2 to items 3, 4, 5, ..., n. It continues like that until
every pair has been compared exactly once. If it compares item x to item y, it will not
later compare item y to item x. It will not compare any item to itself.

Your friend wants to know when his program is halfway done. Assuming that all
comparisons take the same amount of time, what will be the last number printed when
the program is exactly halfway done? For an odd number of comparisons, this is when
it's doing the middle comparison. For an even number, it's the first of the two middle
comparisons. Note that since the earlier items have more comparisons than the later
items, the answer is not simply n/2.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with single integer n
(2 ≤ n ≤ 109), indicating the number of items your friend is comparing.

Output

Output a single integer representing the last number your friend's program prints
before it performs the halfway comparison.

Sample Input Sample Output

4

1

7

2

10

3

1919

562

290976843

85225144

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 16 11 November, 2017

Law 11
Of the seventeen enumerated laws of Soccer, Offside as described by Law 11 is perhaps
the most contentious. In short, offside consists of two conditions: the offside position,
and a state of play that turns the offside position into an offense. In an attempt to
consistently enforce offside offenses (and generally ratchet down the poor
sportsmanship of parents who consider themselves smarter than the referees, but too
selfish to serve as referees themselves), your team has been contacted to implement
the analysis algorithm for Offside Enforcement Technology, soon to be known as OET.
This phase of OET will focus solely on the Offside Position, which may be stated as:

 Any part of a player’s head, body, or feet (but not hands or arms) is in the

opponents' side of the field (excluding the halfway line), AND

 Any part of a player’s head, body, or feet (but not hands or arms) is closer to the

opponents' goal line than BOTH the ball AND all but 1 opponent

For the purposes of OET, consider each player to be a single point, and determine if the
offense is in an offside position. The field will be 100m × 80m, with the point (0,0) being
the center of the halfway line, and the opponent’s goal line running from (50,-40) to
(50,40).

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will have exactly 23 lines of input. Each line will
contain two integers, x and y (-50 ≤ x ≤ 50, -40 ≤ y ≤ 40), which indicate the position of
the ball or a player on the field in meters. The first line will indicate the position of the
ball, then the next 11 will be the offense and the last 11 will be the defense. No two
players will be in the same position.

Output

Output a single integer, 1 of the play is offside, and 0 if it is not.

(0,0)

(-50,-40)

(-50,40)

(50,-40)

(50,40)

Goal Line

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 16 11 November, 2017

Sample Input Sample Output

9 4

-45 -40

-11 18

44 -16

36 -32

-29 -30

7 -33

47 27

5 -37

-11 18

-15 -6

-7 -1

1 22

-39 11

-9 -9

10 38

-43 -8

-16 -29

43 -27

2 -27

-4 -30

49 -15

-48 10

1

9 4

-45 -40

-11 18

44 -16

36 -32

-29 -30

7 -33

47 27

5 -37

-11 18

-15 -6

-7 -1

1 22

-39 11

-9 -9

10 38

-43 -8

-16 -29

48 -27

2 -27

-4 -30

49 -15

-48 10

0

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 16 11 November, 2017

Long Long Strings
To store DNA sequences your company has developed a general LongLongString class
that can store strings with a theoretically unlimited number of characters. Individual
character can be referenced by index. The leftmost character is at position 1. The class
can execute simple programs with three basic operations:

 insert(p, c) - inserts the character c at position p. All characters past p are

pushed to the right by 1.

 delete(p) – deletes the character at position p. All character past p are pushed

to the left by 1.

 end – ends the program

Your job is two write a program that compares two string editing programs and
determines if they are different. They are not different if, when applied to any string,
they produce identical results. Otherwise, they are different.

For example:

 [delete(1) delete(2) end] and [delete(3) delete(1) end] are not different

 [delete(2) delete(1) end] and [delete(1) delete(2) end] are different.

 [insert(1,X) delete(1) end] and [end] are not different.

 [insert(14,B) insert(14,A) end] and [insert(14,A) insert(15,B) end] are not

different

 [insert(14,A) insert(15,B) end] and [insert(14,B) insert(15,A) end] are different.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of exactly two programs, one after
the other. Each program will end with an end statement, and each will be no longer
than 2,000 instructions. Each line of each program will consist of exactly one of:

 I p c

or
 D p

or
 E

Where p (1 ≤ p ≤ 1010) is a position in the string, and c is a single capital letter (A..Z). I

means insert, D means delete, and E means end.

Output

Output a single integer, 1 if the programs are different, and 0 of they are not different.

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 16 11 November, 2017

Sample Input Sample Output

D 1

D 2

E

D 3

D 1

E

0

D 2

D 1

E

D 1

D 2

E

1

I 1 X

D 1

E

E

0

I 14 B

I 14 A

E

I 14 A

I 15 B

E

0

I 14 A

I 15 B

E

I 14 B

I 15 A

E

1

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 16 11 November, 2017

Move Away
Tommy has just completed college and is looking for his first job. A priority in his life is
living close to his friends, but he wants to live as far away from his parents as possible.

You are given the locations of Tommy's friends and the maximum distance he would be
willing to live away from each friend. You also know that Tommy's parents live at (0, 0)
in the coordinate plane. Determine how far Tommy can live from his parents. (There will
always be at least one point meeting these requirements.)

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line with a single integer n (1 ≤
n ≤ 50), representing the number of friends Tommy has. The next n lines will each
contain three integers: x, y (-1,000 ≤ x, y ≤ 1,000) and d (1 ≤ d ≤ 1,000), representing the
(x, y) coordinate of his friend and the maximum distance d he is willing to live away from
that friend.

Output

Output a single decimal number on a single line, equal to the maximum distance he can
live from his parents while still being close enough to all of his friends. Output this
number to exactly 3 decimal places, rounded.

Sample Input Sample Output

4

1 0 1

0 1 1

-1 0 1

0 -1 1

0.000

2

-1 0 1000

2 0 1000

999.999

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 16 11 November, 2017

Purple Rain
Purple rain falls in the magic kingdom of Linearland which is a straight, thin peninsula.
On close observation however, Prof. Nelson Rogers finds that actually it is a mix of Red
and Blue drops. In his zeal, he records the location of each of the raindrops to fall with
its corresponding color in different locations along the peninsula. He wants answer the
following question: which section of Linearland had the least purple rain? That is, which
section had the greatest difference between red rain and blue rain?

After some thought, he decides to model the problem as follows: Divide the peninsula
into n sections and describe it as a sequence of R or B values depending on whether the
rainfall in that section is primarily red or blue. Then, find the part consisting of
consecutive sections where the absolute difference of the count of Rs and Bs is
maximized.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with a string s (1 ≤
|s| ≤ 100,000), where every character in s is either a capital B or a capital R. This string
describes the peninsula, from west to east.

Output

Output two integers, indicating the start and end of the part of the peninsula which
maximizes the difference between Rs and Bs. The first character of s is at position 1, and
the last is at position n. Output the smaller index first. If there are multiple parts that
feature the same maximal absolute difference, print the one with the smallest starting
position. If there are multiple such parts starting at that same smallest starting position,
print the shortest of those.

Sample Input Sample Output

BBRRBRRBRB

3 7

BBRBBRRB

1 5

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 16 11 November, 2017

Rainbow Roads
Your city has decided to spice up its image – by painting its roads different colors!

Your city will paint a road the same uniform color between two intersections if there are
no intersections in between (for our purposes, we’ll refer to dead ends and cul-de-sacs
as intersections), but along its full length, a road may be painted many different colors.
Interestingly, there is exactly one path along its roads between any two intersections in
the city.

The city council wants to label some intersections as Super intersections, and put up
signs designating them so. They consider a path a Rainbow if there are no intersections
along the path where the road in and the road out are the same color. An intersection is
a Super intersection if the path from that intersection to every other intersection is a
Rainbow.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line of input containing a
single integer n (1 ≤ n ≤ 50,000) which is the number of intersections. The intersections
are numbered 1..n.

Each of the next n-1 lines will contain three integers, a, b and c (1 ≤ a,b,c ≤ n, a≠b),
which describe a road between intersection a and intersection b with color c. It is
guaranteed that the given roads satisfy the constraint that there is exactly one path
between any pair of intersections. The roads are two-way roads, so a road from a to b
also goes from b to a.

Output

On the first line, output a single integer indicating the number of Super intersections. On
the following lines, output a list of integers, one per line. These are the Super
intersections. Print them in numerical order, smallest to largest.

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 16 11 November, 2017

Sample Input Sample Output

8

1 3 1

2 3 1

3 4 3

4 5 4

5 6 3

6 7 2

6 8 2

4

3

4

5

6

8

1 2 2

1 3 1

2 4 3

2 7 1

3 5 2

5 6 2

7 8 1

0

9

1 2 2

1 3 1

1 4 5

1 5 5

2 6 3

3 7 3

4 8 1

5 9 2

5

1

2

3

6

7

10

9 2 1

9 3 1

9 4 2

9 5 2

9 1 3

9 6 4

1 8 5

1 10 5

6 7 9

4

1

6

7

9

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 16 11 November, 2017

Arithmetic Sequences
An Arithmetic Sequence of integers is one in which the next number in the sequence is
obtained by adding a constant to the current number. For example, this is an arithmetic
sequence (the constant is 7):

3, 10, 17, 24, 31, …

Given a part of an arithmetic sequence with some numbers missing, fill in the missing
numbers.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with exactly ten
integers. Eight of them will be 0, the other two will be positive. The two positive integers
may be anywhere among the ten integers, and will be no larger than 1,000. The 0 values
represent missing values from the sequence.

Output

If it is possible to complete the sequence with integers, then output ten integers on a
single line, with a single space between them, by replacing the 0 values with the correct
numbers. If it is not possible to complete the sequence with integers, simply output a
single -1. Although the two non-zero inputs are positive, the rest of the sequence might
not be. Likewise, while the two non-zero inputs are ≤1,000, the rest of the sequence
might not be.

Sample Input Sample Output

5 0 15 0 0 0 0 0 0 0

5 10 15 20 25 30 35 40 45 50

5 0 0 15 0 0 0 0 0 0

-1

0 0 0 15 0 3 0 0 0 0

33 27 21 15 9 3 -3 -9 -15 -21

0 0 19 0 0 0 0 0 19 0

19 19 19 19 19 19 19 19 19 19

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 16 11 November, 2017

Star Arrangements
The recent vote in Puerto Rico favoring US statehood has made flag makers very
excited. An updated flag with 51 stars rather than the current 50 would cause a huge
jump in US flag sales. The current pattern for 50 stars is five rows of 6 stars (30),
interlaced with four offset rows of 5 stars (20).

This pattern has some appealing properties: adjacent rows differ by no more than one
star. This star arrangement can be represented uniquely in a compact notation by the
first two rows' star counts: 6 5.

A 51-star flag can have three rows of 9 stars, interlaced with three rows of 8 stars (27 +
24 = 51), or 9 8. If Guam were to also become a state, a 52-star flag could have 13 rows
of 4 stars, or 13 13 (because there are 13 stars in each of the first 2 rows).

A visually appealing star field satisfies these conditions:

1) There are at least 2 rows of stars.

2) All odd numbered rows have the same number of stars.

3) All even numbered rows have the same number of stars.

4) The difference in the number of stars between any two adjacent rows is either

always 0, or always 1

5) The first row cannot have fewer stars than the second, nor can it have only 1

star.

Given a number of states, describe all possible appealing star fields in compact notation.

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 16 11 November, 2017

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with single integer n
(3 ≤ n ≤ 106), indicating the number of stars.

Output

Output all possible star field arrangements, in compact notation. Output them one
arrangement per line, with a single space between the two integers. Output them in
increasing order of the first integer. If the first integer of two arrangements is the same,
output them in increasing order of the second integer.

Sample Input Sample Output

3

2 1

50

2 1

2 2

3 2

5 4

5 5

6 5

10 10

13 12

17 16

25 25

51

2 1

3 3

9 8

17 17

26 25

52

2 2

4 4

7 6

13 13

26 26

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 15 of 16 11 November, 2017

Treasure Map
You have found a treasure map! The map leads you to several gold mines. The mines
each produce gold each day, but the amount of gold that they produce diminishes each
day. There are paths between the mines. It may take several days to go from one mine
to another. You can collect all of the day’s gold from a mine when you are there, but you
have to move on, you cannot stay for multiple days at the same mine. However, you can
return to a mine after leaving it.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line containing two integers n
(2 ≤ n ≤ 1,000) and m (1 ≤ m ≤ 1,000), where n is the number of mines, and m is the
number of paths.

The next n lines will each describe a mine with two integers, g (1 ≤ g ≤ 1,000) and d (1 ≤
d ≤ 1,000), where g is the amount of gold mined on day 1, and d is the amount by which
the gold haul diminishes each day. For example, if g=9 and d=4, then on day 1, the mine
produces 9, on day 2 it produces 5, on day 3 it produces 1, and from day 4 on, it
produces 0 (the mines cannot produce negative amounts of gold). The mines are
numbered 1..n in the order that they appear in the input, and you start at mine 1 on day
1.

The next m lines will each describe a path with three integers, a, b (1 ≤ a < b ≤ n) and t (1
≤ t ≤ 100), where the path goes from mine a to mine b, and takes t days to traverse. The
paths go in both directions, so that a path that goes from a to b can also be used to go
from b to a.

Output

Output a single integer, which is the maximum amount of gold that you can collect.

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 16 of 16 11 November, 2017

Sample Input Sample Output

2 1

10 1

10 2

1 2 1

42

3 2

10 5

3 1

5 1

1 2 1

2 3 1

16

3 3

20 6

8 2

6 1

1 2 1

2 3 1

1 3 1

38

2 1

1 1

10 5

1 2 2

1

