

Division 1

Abstract Art .. 1

Count the Bits ... 3

Exam .. 4

Illiteracy .. 5

Inversions ... 7

Knockout .. 9

Troop Mobilization ... 10

Paper Strips .. 11

Rectangles .. 12

Area Rug ... 13

To Tell the Truth ... 14

Hosted by:

College of Charleston

Florida International University

Kennesaw State University

University of West Florida

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 14 3 November, 2018

Abstract Art
Peter painted a peculiar piece of art involving a grid of cells. He's not quite happy with it.
Some of the colors in his painting are touching, and he doesn’t like that. He would like to
use a dab of whiteout to separate any different colors that are touching.

The painting consists of an r×c grid of cells where each cell is painted some color. Two
colored cells are touching if they share a border edge. Cells sharing only a corner are not
considered touching.

Cells are labelled with lowercase letters to denote colors. Peter can replace some of the
cells with '#' representing whiteout. For example:

aaab aa#b

aabb a#bb

aaab aa#b

cccc ##c#

Peter has separated all of the colors using only 6 dabs of whiteout. In order to save
whiteout, Peter would like to minimize the number of cells he must dab.

But Peter, in the process of trying to save his painting, may accidentally paint over all of
his favorite color! So while using the minimum number of dabs of whiteout, he would
like to know which colors could possibly be retained in the painting.

For example the painting:

bab

bbb

Can be fixed using one dab:

b#b

bbb

It is possible to save the color b with a single dab, but it is not possible to use only a
single dab and retain the color a.

Determine this minimum number of dabs and which colors are possible to save.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 14 3 November, 2018

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers r and c
(1 ≤ r,c ≤ 100), where r is the number of rows in the painting, and c is the number of
columns.

Each of the next r lines will contain a string of length exactly c, consisting of only lower
case letters, or the symbol ‘#’ representing a cell that has already been whited out.

Output

Output exactly two lines. On the first line output a single integer, which is the minimum
number of additional cells that must be whited out, not counting those that are already
whited out. On the second line output a string of lower case letters in increasing
alphabetic order. These should be the colors in the painting that can be retained by
whiting out a minimum number of cells.

Sample Input Sample Output

2 2

ab

ba

2

ab

2 3

aba

aaa

1

a

3 4

#a##

bcde

##f#

2

abef

In the first example, a can be retained with 2 dabs:

a#

#a

And b can be retained with 2 dabs:

#b

b#

So, both a and b can be retained with 2 dabs, just not at the same time.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 14 3 November, 2018

Count the Bits
Given a value k and a number of bits b, calculate the total number of 1-bits in the binary
representations of all multiples of k that are between 0 and 2b-1 (inclusive).

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line containing two space-separated integers
k (1 ≤ k ≤ 1,000) and b (1 ≤ b ≤ 128), where k and b are as described above.

Output

Output a single integer, which is the total number of 1-bits in the binary representations
of all multiples of k that are between 0 and 2b-1 (inclusive). Since this number may be
very large, output it modulo 109+9.

Sample Input Sample Output

1 4 32

10 5 8

100 7 3

3 28 252698795

11 128 856188165

1 26 872415232

876 128 530649653

Consider the second sample: k=10 and b=5.

25-1 = 31. All the multiples of 10 between 0 and 31 are: 10, 20 and 30.

10 = 01010b (2 1-bits)
20 = 10100b (2 1-bits)
30 = 11110b (4 1-bits)

That’s a total of 2+2+4=8 1-bits.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 14 3 November, 2018

Exam
You and your friend have just taken a True/False exam. Your friend has been to see the
instructor, so they know how many answers they got right (but not which ones). You
compare notes: you know your answers and your friend’s answers. What is the
maximum number of answers you could have gotten right?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line containing a single integer n (0 ≤ n ≤ 1,000), which is
the number of answers your friend got right on the exam.

Each of the next two lines will contain a string s (max[n,1] ≤ |s| ≤ 1,000, s ϵ {T,F}*). The
two strings will be of the same length. The first line represents your answers; the second
line represents your friend’s answers. The order of answers is the same in both strings:
the first letter is the answer to question 1, the second to question 2, and so on.

Output

Output a single integer, which is the maximum number of answers you could have
gotten right.

Sample Input Sample Output

3

FTFFF

TFTTT

2

6

TTFTFFTFTF

TTTTFFTTTT

9

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 14 3 November, 2018

Illiteracy
Illiteracy is a simple puzzle game. After the contest, if you’d like to play it, you can find it
here: https://le-slo.itch.io/illiteracy. Of course, during the contest, it won’t be
accessible (and you’ve got better things to do!)

The game has a string of 8 icons. The icons in the game are very artistic, but for
simplicity, we'll just call them A..F. Clicking any icon has a unique effect on the other
icons. Most of the icons Rotate other icons. That means that they change AB, BC,
CD, DE, EF, and FA.

There are 8 icon positions in a row, numbered left to right, 1 to 8. Here's what each of
the icons do when clicked:

 A: Rotates the icon immediately to the left, if there is one, and immediately to

the right, if there is one.

 B: If not on the end, changes the icon immediately to the right to be same as the

one immediately to the left (does nothing on the ends). This is the only icon that

doesn’t Rotate other icons.

 C: Rotates the mirror image (when clicked in position x, Rotates 9-x. e.g. clicking

1 Rotates 8, 2 Rotates 7, etc.)

 D: Rotates all of the icons between this one and the closest end. (e.g. clicking 3

Rotates 1 and 2, 5 Rotates 6, 7 and 8. Clicking this icon on the end does nothing.)

 E: Rotates the closest end, and also the position which is the same distance in

the opposite direction. (e.g. clicking 1 does nothing, 2 Rotates 1 and 3, 3 Rotates

1 and 5, 5 Rotates 8 and 2, 7 Rotates 8 and 6, etc.)

 F: Rotates another position with this pattern: Clicking 1 Rotates 5, 2 Rotates 1, 3

Rotates 6, 4 Rotates 2, 5 Rotates 7, 6 Rotates 3, 7 Rotates 8, and 8 Rotates 4. In

other words, clicking an icon in an odd position Rotates (x+9)/2, even Rotates

x/2.

Given a starting and target configuration, what’s the smallest number of steps needed
to get from the start to the target?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of exactly two lines. Each line will have a string of length
exactly 8, consisting only of the upper-case letters A, B, C, D, E and/or F. The first line
holds the starting position, the second holds the target.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 14 3 November, 2018

Output

Output a single integer, which is the smallest number of steps needed to get from the
start to the target, or -1 if it isn’t possible.

Sample Input Sample Output

ABCDEFCD

BBBBBBBB

9

BBBBBBBB

ABCDEFCD

-1

Here is one possible way to solve the first case in the minimum 9 steps. The icon clicked
is in Inverse, the icons which change are in Bold.

ABCDEFCD

ABDDEFCD

ABEDEFCD

BBEDFFCD

BBBDFFCD

BBBBFFCD

BBBBBFCD

BBBBBBCD

BBBBBBBD

BBBBBBBB

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 14 3 November, 2018

Inversions
Consider a sequence of n integers, all of them between 1 and k (inclusive). Some of the
integers are missing, and are replaced with 0s.

An inversion is a pair of values ai and aj in the sequence, where i<j, but ai>aj. What’s the
maximum number of inversions possible if the missing integers are all between 1 and k
inclusive?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will start with a line with two space-separated integers n (1 ≤ n ≤ 200,000)
and k (1 ≤ k ≤ 100), where n is the length of the sequence and k is the maximum value of
elements of the sequence.

Each of the next n lines will contain a single integer x (0 ≤ x ≤ k). This is the sequence, in
order, with 0s representing the missing values.

Output

Output a single integer, which is the maximum number of inversions possible.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 14 3 November, 2018

Sample Input Sample Output

6 9

0

8

4

3

0

0

15

10 9

5

2

9

0

7

4

8

7

0

0

28

10 9

7

4

0

0

8

5

0

0

3

1

36

In the first example, if you replace the 0s like this:

9 8 4 3 2 1
Then every pair of numbers in the sequence is an inversion, for a total of 15.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 14 3 November, 2018

Knockout
The solitaire game Knockout is played as follows. The digits from 1 to 9 are written down
in ascending order. In each turn, you throw a pair of six-sided dice; you sum the dice,
and cross out some set of digits, of your choice, that sum to the same total. If you
cannot, the game ends and your score is the remaining digits, taken as a single number.
Otherwise, you throw the dice again and continue.

This game can be played to either minimize or maximize your score. Given a position of
the game (what digits remain) and a roll of the dice, determine which digits you should
remove and what your expected score would be for both versions of the game,
assuming you make the best moves possible for whichever version you’re playing for the
remainder of the game. The expected score is the sum of all possible scores weighted by
their probabilities (presuming optimum play).

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line containing a string of digits d (1 ≤ |d| ≤ 9) and
two integers a and b (1 ≤ a,b ≤ 6), all separated by spaces. The string of digits d will
contain a subset of the digits 1..9 in ascending order, with no digit appearing more than
once. This is the current state of the game. The integers a and b represent your current
throw of the dice.

Output

Output two lines, each with two parts. First, output the digits that you eliminate with
your throw of the dice, as a string of digits in ascending order. If you cannot eliminate
any digits, output -1. Then, output the expected score as a real number rounded to five
decimal places. Output a space between the parts.

The first line represents the best result when minimizing your score and the second line
represents the best result when maximizing your score. Note that it is impossible for
two different combinations of digits to yield the same expected score.

Sample Input Sample Output

1345 1 1 -1 1345.00000

-1 1345.00000

12349 3 1 13 151.70370

4 401.24546

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 14 3 November, 2018

Troop Mobilization
You are playing a strategy games in which you are required to mobilize an army. The
army consists of different types of troops, each of which has a cost, health, and potency.
You can acquire any combination of the troop types, even fractional, such that the total
cost is no more than the amount of money you have to spend. The strength of the army
is equal to its total health value multiplied by its total potency (i.e. (Σaihi)×(Σaipi), where
hi is the health of troop type i, pi is the potency of troop type i, and ai is the amount
acquired of troop type i). What is the greatest strength you can achieve given the troops
available and the money in your coffers? You may assume that there will always be
sufficient troops to buy as many as you can afford.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers n (1 ≤ n ≤ 30,000)
and m (0 ≤ m ≤ 100,000), where n is the number of troop types and m is the total
amount of money you have to spend.

Each of the next n lines will hold three values separated by spaces, representing a type
of troop:

c h p

Where c (1 ≤ c ≤ 100,000) is an integer, which is the cost of that type of troop,
h (0.0 ≤ h ≤ 1.0) is a real number, which is the health of that type of troop, and
p (0.0 ≤ p ≤ 1.0) is a real number, which is the potency of that type of troop.

Output

Output a single real number, which is the maximum strength you can achieve with your
monetary resources. Output this number rounded to exactly 2 decimal places.

Sample Input Sample Output

4 100000

300 1 0.02

500 0.2 1

250 0.3 0.1

1000 1 0.1

19436.05

2 100

1 0.1 1

1 1 0.1

3025.00

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 14 3 November, 2018

Paper Strips

Tito has been given a paper strip with a string of letters written on it. He would like to
rearrange the letters. He does this by making some number of cuts between letters and
then rearranging the strips of paper.

Tito likes order, so he would like the resulting strip of paper to be bitonic. That is, there
should be some character position in the resulting string where the characters up to and
including that position are alphabetically non-decreasing and all characters after and
including that position are alphabetically non-increasing. Consider this example:

The resulting string in the above example is bitonic. Consider the first e. The string

aaabbe is non-decreasing, and the string eeddcc is non-increasing. Tito achieved this
with three cuts. Note that any string which is monotonic (uniformly nondecreasing or
nonincreasing) is also bitonic.

Determine the minimum number of cuts that Tito needs in order to make his string
bitonic.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line containing a string s (1 ≤ |s| ≤ 50) which
consists only of lower-case letters. This is the original string on the strip of paper given
to Tito.

Output

Output a single integer, which is the minimum number of required cuts.

Sample Input Sample Output

abbaaddccee 3

abbaaddccee

abb | aa | ddcc | ee

aa | abb | ee | ddcc

aaabbeeddcc

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 14 3 November, 2018

Rectangles
You are working on a new graphics system, which has added a new feature. Whenever
you draw a figure, all the pixels in that figure flip from white to black, or from black to
white. This image is what happens when three overlapping rectangles are drawn on a
white field:

Starting with a white field, given a series of axis-aligned rectangles, how many pixels end
up black?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with a single integer n (1 ≤ n ≤ 100,000) indicating
the number of rectangles.

Each of the next n lines will have four space-separated integers x1, y1, x2 and y2
(0 ≤ x1 < x2 ≤ 109, 0 ≤ y1 < y2 ≤ 109) which represent opposite corners of a rectangle.
The rectangle consists of all pixels (x,y) such that x1 ≤ x < x2 and y1 ≤ y < y2, so the area
of the rectangle is (x2 - x1) × (y2 - y1) pixels.

Output

Output a single integer, which is the number of pixels that are black after all of the
rectangles are drawn on a white field.

Sample Input Sample Output

2

0 0 4 4

1 1 3 3

12

4

0 0 10 10

1 1 11 11

2 2 12 12

3 3 13 13

72

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 14 3 November, 2018

Area Rug
The main room of your home is square, n×n feet. Unfortunately, the floor is dirty. You’re
a college student, so you hate to clean! Rather than clean it, you buy an area rug s×s
feet square to cover some of the dirty spots.

Consider all of the ways that you could place the s×s area rug in the n×n room so that all
s×s square feet of it cover part of the floor, axis aligned (no rotation). How many ways
are there to cover a certain number of dirty spots?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers n (1 ≤ n ≤ 1,000)
and s (1 ≤ s ≤ min[n,100]), where n is the size of one side of the room, and s is the size of
one side of the new area rug.

Each of the next n lines will have a string of exactly n characters, consisting only of ‘C’ (a
clean spot on the floor) or ‘D’ (a dirty spot on the floor).

Output

For each count of dirty floor spots covered, from 0 to s2, if the number of ways of
covering that many dirty spots with an area rug of size s×s is greater than 0, output the
number of spots and the number of ways of covering them on a line, separated by a
space. Output them in order, smallest number of dirty spots to largest.

Sample Input Sample Output

10 5

DDDDDDDDDD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DDDDDDDDDD

0 16

5 16

9 4

In this example, there are 4 ways to cover 9 dirty spots (the corners), 16 ways to cover 5
dirty spots (the non-corner edges), and 16 ways to cover 0 dirty spots (the interior).

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 14 3 November, 2018

To Tell the Truth
There are n people in a room, each of whom always tells the truth, or always lies. Each
of them makes a statement of the form: “Some number between a and b (inclusive) of
us are telling the truth.” What is the maximum number of truth-tellers in the room?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line containing an integer n (1 ≤ n ≤ 1,000) which is the
number of people in the room.

Each of the next n lines will have two space-separated integers, a and b (0 ≤ a ≤ b ≤ n).
Each line represents the statement of one person that “Some number between a and b
(inclusive) of us are telling the truth.”

Output

Output a single integer, which is the largest possible number of truth-tellers, or -1 if the
statements are inconsistent.

Sample Input Sample Output

3

1 1

2 3

2 2

2

8

0 1

1 7

4 8

3 7

1 2

4 5

3 7

1 8

-1

