

Division 2

Exam .. 1

Goat Rope ... 2

Repeating Goldbachs .. 3

Illiteracy .. 4

Knockout .. 6

Rectangles .. 7

Random Index Vectors .. 8

Area Rug ... 10

Sculpture .. 11

Time Limits ... 12

To Tell the Truth ... 13

Hosted by:

College of Charleston

Florida International University

Kennesaw State University

University of West Florida

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 13 3 November, 2018

Exam
You and your friend have just taken a True/False exam. Your friend has been to see the
instructor, so they know how many answers they got right (but not which ones). You
compare notes: you know your answers and your friend’s answers. What is the
maximum number of answers you could have gotten right?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line containing a single integer n (0 ≤ n ≤ 1,000), which is
the number of answers your friend got right on the exam.

Each of the next two lines will contain a string s (max[n,1] ≤ |s| ≤ 1,000, s ϵ {T,F}*). The
two strings will be of the same length. The first line represents your answers; the second
line represents your friend’s answers. The order of answers is the same in both strings:
the first letter is the answer to question 1, the second to question 2, and so on.

Output

Output a single integer, which is the maximum number of answers you could have
gotten right.

Sample Input Sample Output

3

FTFFF

TFTTT

2

6

TTFTFFTFTF

TTTTFFTTTT

9

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 13 3 November, 2018

Goat Rope
You have a fence post located at (x, y) and a goat. You also have a house, which you
model as an axis-aligned rectangle with opposite corners at (x1, y1) and (x2, y2). You
want to give the goat as much room to roam as possible, but you don’t want the goat to
be able to touch the house. As a guide to how much rope you should buy, determine the
minimum distance from the post to your house.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line containing six space-separated integers, all in
the same units:

x y x1 y1 y2 y2

Where (x, y) is the location of the post, and (x1, y1) and (x2, y2) are opposite corners of
the house. The following are guaranteed:

 All values are between -1,000 and 1,000 inclusive.

 x1<x2 and y1<y2

 The post is not inside the house or on the border.

o At least one of these is true: x<x1 or x>x2 or y<y1 or y>y2

Output

Output a single real number, which is the minimum distance from the post to your
house (in the same units as the inputs). Output this number rounded to exactly 3
decimal places.

Sample Input Sample Output

7 4 0 0 5 4 2.000

6 0 0 2 7 6 2.000

4 8 7 8 9 9 3.000

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 13 3 November, 2018

Repeating Goldbachs
The Goldbach Conjecture states that any even number greater than 3 can be expressed
as the sum of two primes (primes are numbers that have exactly two factors:
themselves and 1). It has never been proven for all even numbers, but it has been
demonstrated to be true for all of the numbers that we’ll use for this problem.

Consider any even integer x>3. There may be many pairs of primes which sum to x. Take
the pair with the largest difference. That difference must be even, and less than x. So,
repeat the trick. How many steps does it take until you reach an even number less than
3 (2 or 0)?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line with a single integer x (0 ≤ x ≤ 106, x is even).

Output

Output a single integer, which is the count of Repeating Goldbach steps until the
number is less than 3.

Sample Input Sample Output

20 3

30 4

40 5

50 6

60 7

70 8

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 13 3 November, 2018

Illiteracy
Illiteracy is a simple puzzle game. After the contest, if you’d like to play it, you can find it
here: https://le-slo.itch.io/illiteracy. Of course, during the contest, it won’t be
accessible (and you’ve got better things to do!)

The game has a string of 8 icons. The icons in the game are very artistic, but for
simplicity, we'll just call them A..F. Clicking any icon has a unique effect on the other
icons. Most of the icons Rotate other icons. That means that they change AB, BC,
CD, DE, EF, and FA.

There are 8 icon positions in a row, numbered left to right, 1 to 8. Here's what each of
the icons do when clicked:

 A: Rotates the icon immediately to the left, if there is one, and immediately to

the right, if there is one.

 B: If not on the end, changes the icon immediately to the right to be same as the

one immediately to the left (does nothing on the ends). This is the only icon that

doesn’t Rotate other icons.

 C: Rotates the mirror image (when clicked in position x, Rotates 9-x. e.g. clicking

1 Rotates 8, 2 Rotates 7, etc.)

 D: Rotates all of the icons between this one and the closest end. (e.g. clicking 3

Rotates 1 and 2, 5 Rotates 6, 7 and 8. Clicking this icon on the end does nothing.)

 E: Rotates the closest end, and also the position which is the same distance in

the opposite direction. (e.g. clicking 1 does nothing, 2 Rotates 1 and 3, 3 Rotates

1 and 5, 5 Rotates 8 and 2, 7 Rotates 8 and 6, etc.)

 F: Rotates another position with this pattern: Clicking 1 Rotates 5, 2 Rotates 1, 3

Rotates 6, 4 Rotates 2, 5 Rotates 7, 6 Rotates 3, 7 Rotates 8, and 8 Rotates 4. In

other words, clicking an icon in an odd position Rotates (x+9)/2, even Rotates

x/2.

Given a starting and target configuration, what’s the smallest number of steps needed
to get from the start to the target?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of exactly two lines. Each line will have a string of length
exactly 8, consisting only of the upper-case letters A, B, C, D, E and/or F. The first line
holds the starting position, the second holds the target.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 13 3 November, 2018

Output

Output a single integer, which is the smallest number of steps needed to get from the
start to the target, or -1 if it isn’t possible.

Sample Input Sample Output

ABCDEFCD

BBBBBBBB

9

BBBBBBBB

ABCDEFCD

-1

Here is one possible way to solve the first case in the minimum 9 steps. The icon clicked
is in Inverse, the icons which change are in Bold.

ABCDEFCD

ABDDEFCD

ABEDEFCD

BBEDFFCD

BBBDFFCD

BBBBFFCD

BBBBBFCD

BBBBBBCD

BBBBBBBD

BBBBBBBB

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 13 3 November, 2018

Knockout
The solitaire game Knockout is played as follows. The digits from 1 to 9 are written down
in ascending order. In each turn, you throw a pair of six-sided dice; you sum the dice,
and cross out some set of digits, of your choice, that sum to the same total. If you
cannot, the game ends and your score is the remaining digits, taken as a single number.
Otherwise, you throw the dice again and continue.

This game can be played to either minimize or maximize your score. Given a position of
the game (what digits remain) and a roll of the dice, determine which digits you should
remove and what your expected score would be for both versions of the game,
assuming you make the best moves possible for whichever version you’re playing for the
remainder of the game. The expected score is the sum of all possible scores weighted by
their probabilities (presuming optimum play).

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will consist of a single line containing a string of digits d (1 ≤ |d| ≤ 9) and
two integers a and b (1 ≤ a,b ≤ 6), all separated by spaces. The string of digits d will
contain a subset of the digits 1..9 in ascending order, with no digit appearing more than
once. This is the current state of the game. The integers a and b represent your current
throw of the dice.

Output

Output two lines, each with two parts. First, output the digits that you eliminate with
your throw of the dice, as a string of digits in ascending order. If you cannot eliminate
any digits, output -1. Then, output the expected score as a real number rounded to five
decimal places. Output a space between the parts.

The first line represents the best result when minimizing your score and the second line
represents the best result when maximizing your score. Note that it is impossible for
two different combinations of digits to yield the same expected score.

Sample Input Sample Output

1345 1 1 -1 1345.00000

-1 1345.00000

12349 3 1 13 151.70370

4 401.24546

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 13 3 November, 2018

Rectangles
You are working on a new graphics system, which has added a new feature. Whenever
you draw a figure, all the pixels in that figure flip from white to black, or from black to
white. This image is what happens when three overlapping rectangles are drawn on a
white field:

Starting with a white field, given a series of axis-aligned rectangles, how many pixels end
up black?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with a single integer n (1 ≤ n ≤ 100,000) indicating
the number of rectangles.

Each of the next n lines will have four space-separated integers x1, y1, x2 and y2
(0 ≤ x1 < x2 ≤ 109, 0 ≤ y1 < y2 ≤ 109) which represent opposite corners of a rectangle.
The rectangle consists of all pixels (x,y) such that x1 ≤ x < x2 and y1 ≤ y < y2, so the area
of the rectangle is (x2 - x1) × (y2 - y1) pixels.

Output

Output a single integer, which is the number of pixels that are black after all of the
rectangles are drawn on a white field.

Sample Input Sample Output

2

0 0 4 4

1 1 3 3

12

4

0 0 10 10

1 1 11 11

2 2 12 12

3 3 13 13

72

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 13 3 November, 2018

Random Index Vectors
Random Index Vectors (RIVs) are a relatively new technique for pattern matching. A RIV
is a large, sparse vector of 1s and -1s. If randomly generated, the dot product of two
RIVs is zero or very nearly zero, so they are orthogonal or very nearly orthogonal. They
are used by assigning a RIV to various attributes, and then combining them in specific
ways to form new vectors for patterns with those attributes. Then, the cosine of the
angle between vectors for two patterns can be used as a measure of similarity between
the patterns.

There are three basic operations on RIVs:

 Two RIVs can be ADDED element by element: Ci = Ai+Bi.

o RIVs can only have 1 and -1 as nonzero elements, so 1+1=1 and -1+-1=-1

 Two RIVs can be MULTIPLIED element by element: Ci = Ai×Bi

 One RIV can be ROTATED by some integer k, where all of the values are shifted

to the left by k (towards the lower indices), and values at the start of the vector

go to the end.

Because they are large and sparse, RIVs usually use a condensed representation. The
vector is represented by a sorted list of indices (starting at 1) where there are non-zero
values, with the index being negative if the value is -1. The representation starts with
the number of non-zero indices.

For example, consider this RIV:
1 0 -1 0 0 0 -1 0 0 1 0

There are 4 non-zero elements at indices 1, 3, 7 and 10. In condensed representation:
4 1 -3 -7 10

Given two RIVs in condensed representation, add them, multiply them, and rotate them
both. Give the resulting vectors in condensed form.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers n (1 ≤ n ≤ 1018)
and k (1 ≤ k ≤ n), where n is the maximum index of the vectors and k is the number of
spots to rotate by.

Each of the next two lines will have a vector in condensed form, starting with an integer
m (0 ≤ m ≤ 1,000) followed by m indices i (1 ≤ |i| ≤ n), all separated by spaces.

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 13 3 November, 2018

Output

Output four Random Index Vectors, one per line, in condensed form.

 On the first line, output the sum of the input vectors.

 On the second line, output the product of the input vectors.

 On the third line, output the first input vector rotated by k.

 On the fourth line, output the second input vector rotated by k.

Sample Input Sample Output

30 13

6 6 -9 -13 18 22 26

8 -1 3 7 11 13 19 20 -27

12 -1 3 6 7 -9 11 18 19 20 22 26 -27

1 -13

6 5 9 13 23 -26 -30

8 6 7 -14 -18 20 24 28 30

20 4

9 -2 -4 -8 -11 -12 15 18 19 20

7 4 5 -10 11 15 18 -20

8 -2 5 -8 -10 -12 15 18 19

5 -4 -11 15 18 -20

9 -4 -7 -8 11 14 15 16 -18 -20

7 1 -6 7 11 14 -16 20

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 13 3 November, 2018

Area Rug
The main room of your home is square, n×n feet. Unfortunately, the floor is dirty. You’re
a college student, so you hate to clean! Rather than clean it, you buy an area rug s×s
feet square to cover some of the dirty spots.

Consider all of the ways that you could place the s×s area rug in the n×n room so that all
s×s square feet of it cover part of the floor, axis aligned (no rotation). How many ways
are there to cover a certain number of dirty spots?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers n (1 ≤ n ≤ 1,000)
and s (1 ≤ s ≤ min[n,100]), where n is the size of one side of the room, and s is the size of
one side of the new area rug.

Each of the next n lines will have a string of exactly n characters, consisting only of ‘C’ (a
clean spot on the floor) or ‘D’ (a dirty spot on the floor).

Output

For each count of dirty floor spots covered, from 0 to s2, if the number of ways of
covering that many dirty spots with an area rug of size s×s is greater than 0, output the
number of spots and the number of ways of covering them on a line, separated by a
space. Output them in order, smallest number of dirty spots to largest.

Sample Input Sample Output

10 5

DDDDDDDDDD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DCCCCCCCCD

DDDDDDDDDD

0 16

5 16

9 4

In this example, there are 4 ways to cover 9 dirty spots (the corners), 16 ways to cover 5
dirty spots (the non-corner edges), and 16 ways to cover 0 dirty spots (the interior).

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 13 3 November, 2018

Sculpture
A modern artist has created a large outdoor sculpture. It consists of a rectangular grid,
where each square cell of the grid is raised to a different height. Because the sculpture
is to be placed outdoors, the artist is worried about rainwater pooling in the lower cells.
He needs to figure out which cells need to have drains installed. A cell will need a drain
if the four cells above, below, left and right are all higher. A cell on the edge or corner of
the grid will never need a drain.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line with two space-separated integers r and c
(1 ≤ r,c ≤ 100), which are the dimensions of the artist’s grid.

Each of the next r rows will contain c space-separated integers h (0 ≤ h ≤ 1,000), which
are the heights of the cells in inches. It is guaranteed that every cell’s height will be
different from those immediately above, below, to the left, and to the right.

Output

Output r lines with c space-separated integers each. Output a 1 if that cell needs a drain,
0 if it doesn’t.

Sample Input Sample Output

7 10

4 5 6 5 7 8 9 3 2 4

9 1 3 4 6 2 0 5 6 1

7 8 1 3 8 7 5 4 3 2

9 3 4 2 7 6 8 2 8 7

8 5 3 6 4 0 7 9 6 3

3 8 4 8 3 7 4 2 5 7

9 3 0 4 5 6 7 8 4 3

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 13 3 November, 2018

Time Limits
Your Chief Judge needs help! He needs to set the time limit for a problem in the
problem set. He has n solutions written by his judges. He knows how long each runs in
the contest environment, in milliseconds. He wants to set the time limit to be at least s
times the slowest solution from his judges, but as small as possible, and he wants it to
be an integral number of seconds. Can you help him?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line containing two space-separated integers
n (1 ≤ n ≤ 100) and s (1 ≤ s ≤ 20), where n is the number of solutions from judges, and s
is the multiplying factor.

The next line will contain n space-separated integers m (1 ≤ m ≤ 2,000), which are the
number of milliseconds it takes for some judge’s solution to run in the contest
environment.

Output

Output a single integer, which is the time limit to set for this problem. It should be in
seconds, and the smallest time that is at least s times the slowest judge’s solution.

Sample Input Sample Output

2 5

200 250

2

3 4

47 1032 1107

5

2018 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 13 3 November, 2018

To Tell the Truth
There are n people in a room, each of whom always tells the truth, or always lies. Each
of them makes a statement of the form: “Some number between a and b (inclusive) of
us are telling the truth.” What is the maximum number of truth-tellers in the room?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs.

Each test case will begin with a line containing an integer n (1 ≤ n ≤ 1,000) which is the
number of people in the room.

Each of the next n lines will have two space-separated integers, a and b (0 ≤ a ≤ b ≤ n).
Each line represents the statement of one person that “Some number between a and b
(inclusive) of us are telling the truth.”

Output

Output a single integer, which is the largest possible number of truth-tellers, or -1 if the
statements are inconsistent.

Sample Input Sample Output

3

1 1

2 3

2 2

2

8

0 1

1 7

4 8

3 7

1 2

4 5

3 7

1 8

-1

