

ICPC North America Regionals 2019 oc international collegiate programming contest

ICPC Southeast USA Regional Contest

Windmill Pivot

Time limit: 10 seconds

Consider a set of points P in the plane such that no 3 points are collinear. Construct a *windmill* as follows:

- Choose a point *p* ∈ *P* and a starting direction such that the line through *p* in that direction does not intersect any other points in *P*. Draw that line (Note: *line*, NOT *ray*).
- Rotate the line clockwise like a windmill about the point p as its pivot until the line intersects another point q ∈ P. Designate that point q to be the new pivot, and then continue the rotation. This is called *promoting* point q.
- Continue this process until the line has rotated a full 360°, returning to its original direction (it can be shown that the line will also return to its original position after a 360° rotation).

During this process, a given point in P can be a pivot multiple times. Considering all possible starting pivots and orientations, find the maximum number of times that a single point can be *promoted* during a single 360° rotation of a windmill. Note that the first point is a pivot, but not *promoted* to be a pivot at the start.

Input

The first line of input contains a single integer n ($2 \le n \le 2000$), which is the number of points $p \in P$.

Each of the next n lines contains two space-separated integers x and y ($-10^5 \le x, y \le 10^5$). These are the points. Each point will be unique, and no three points will be collinear.

Output

Output a single integer, which is the maximum number of times any point $p \in P$ can be *promoted*, considering a full 360° rotation and any arbitrary starting point.

ICPC Southeast USA Regional Contest

Sample Input	Sample Output
3	2
-1 0	
1 0	
0 2	
6	3
0 0	
5 0	
0 5	
5 5	
1 2	
4 2	