ICPC Southeast USA Regional Contest

Windmill Pivot

Time limit: 10 seconds
Consider a set of points P in the plane such that no 3 points are collinear. Construct a windmill as follows:

- Choose a point $p \in P$ and a starting direction such that the line through p in that direction does not intersect any other points in P. Draw that line (Note: line, NOT ray).
- Rotate the line clockwise like a windmill about the point p as its pivot until the line intersects another point $q \in P$. Designate that point q to be the new pivot, and then continue the rotation. This is called promoting point q.
- Continue this process until the line has rotated a full 360°, returning to its original direction (it can be shown that the line will also return to its original position after a 360° rotation).

During this process, a given point in P can be a pivot multiple times. Considering all possible starting pivots and orientations, find the maximum number of times that a single point can be promoted during a single 360° rotation of a windmill. Note that the first point is a pivot, but not promoted to be a pivot at the start.

Input
The first line of input contains a single integer $\boldsymbol{n}(2 \leq \boldsymbol{n} \leq 2000)$, which is the number of points $p \in P$.

Each of the next \boldsymbol{n} lines contains two space-separated integers \boldsymbol{x} and $\boldsymbol{y}\left(-10^{5} \leq \boldsymbol{x}, \boldsymbol{y} \leq 10^{5}\right)$. These are the points. Each point will be unique, and no three points will be collinear.

Output

Output a single integer, which is the maximum number of times any point $p \in P$ can be promoted, considering a full 360° rotation and any arbitrary starting point.

Sample Input	Sample Output
$\begin{array}{ll} 3 & \\ -1 & 0 \\ 1 & 0 \\ 0 & 2 \end{array}$	2
$\begin{array}{ll} 6 & \\ 0 & 0 \\ 5 & 0 \\ 0 & 5 \\ 5 & 5 \\ 1 & 2 \\ 1 & 2 \\ 4 & 2 \end{array}$	3

