2018 ICPC Southeast USA Regional Contest

Count the Bits

Given a value \boldsymbol{k} and a number of bits \boldsymbol{b}, calculate the total number of 1-bits in the binary representations of all multiples of \boldsymbol{k} that are between 0 and $2^{\boldsymbol{b}}-1$ (inclusive).

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs.

Each test case will consist of a single line containing two space-separated integers $\boldsymbol{k}(1 \leq \boldsymbol{k} \leq 1,000)$ and $\boldsymbol{b}(1 \leq \boldsymbol{b} \leq 128)$, where \boldsymbol{k} and \boldsymbol{b} are as described above.

Output

Output a single integer, which is the total number of 1-bits in the binary representations of all multiples of \boldsymbol{k} that are between 0 and $2^{\boldsymbol{b}}-1$ (inclusive). Since this number may be very large, output it modulo $10^{9}+9$.

Sample Input Sample Output

14	32
105	8
1007	3
328	252698795
11128	856188165
126	872415232
876128	530649653

Consider the second sample: $\boldsymbol{k}=10$ and $\boldsymbol{b}=5$.
$2^{5}-1=31$. All the multiples of 10 between 0 and 31 are: 10,20 and 30 .
$10=01010$ b (2 1-bits)
$20=10100 \mathrm{~b}$ (2 1-bits)
$30=11110 \mathrm{~b}$ (4 1-bits)

That's a total of $2+2+4=81$-bits.

