Congruent Numbers

A congruent number is an integer that is the area of some right triangle where the length of each side of the triangle is a rational number. For this problem, we'll only consider the legs of the right triangle, and not the hypotenuse.

A rational number is a fraction, $\boldsymbol{p} / \boldsymbol{q}$, where \boldsymbol{p}, the numerator, and \boldsymbol{q}, the denominator, are integers. Note that if $\boldsymbol{q}=1$, then $\boldsymbol{p} / \mathbf{1}$ is an integer, so any integer is a rational number.

Given two rational numbers which are the non-hypotenuse legs of a right triangle, determine if the area of that triangle is a congruent number. For the purposes of this problem, it is not necessary for the length of the hypotenuse to be a rational number.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will consist of a single line with four integers p1, q1, p2 and $\boldsymbol{q 2}(1 \leq \boldsymbol{p 1}, \boldsymbol{q 1}, \boldsymbol{p 2}, \boldsymbol{q} \mathbf{2} \leq \mathbf{1 0 0 , 0 0 0}$) where $\boldsymbol{p 1 / q 1}$ and $\boldsymbol{p 2 / q 2}$ are the rational numbers which are the sides of a right triangle.

Output

Output a single integer, which is $\mathbf{1}$ if the area of the triangle is an integer, $\mathbf{0}$ if not. Note that the area has to be an integer, not just a rational number.

Sample Input

Sample Output

3	1	4	1
15	1	28	3
1	2	3	4
1	1	10	1

