

programming tools sponsor

2018 ICPC Southeast USA Regional Contest

Inversions

Consider a sequence of **n** integers, all of them between 1 and **k** (inclusive). Some of the integers are missing, and are replaced with 0s.

An *inversion* is a pair of values \mathbf{a}_i and \mathbf{a}_j in the sequence, where $\mathbf{i} < \mathbf{j}$, but $\mathbf{a}_i > \mathbf{a}_j$. What's the maximum number of inversions possible if the missing integers are all between 1 and \mathbf{k} inclusive?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs.

Each test case will start with a line with two space-separated integers n ($1 \le n \le 200,000$) and k ($1 \le k \le 100$), where n is the length of the sequence and k is the maximum value of elements of the sequence.

Each of the next *n* lines will contain a single integer x ($0 \le x \le k$). This is the sequence, in order, with 0s representing the missing values.

Output

Output a single integer, which is the maximum number of inversions possible.

2018 ICPC Southeast USA Regional Contest

Sample Input	Sample Output
6 9	15
0	
8	
4	
3	
0	
10.0	28
5	28
2	
9	
0	
7	
4	
8	
7	
0	
10 9	36
7 Δ	
0	
0	
8	
5	
0	
0	
3	
1	

In the first example, if you replace the 0s like this:

9843**21**

Then every pair of numbers in the sequence is an *inversion*, for a total of 15.