
Problem A
A Totient Quotient

Time Limit: 1 Second, Memory Limit: 2G

For a positive integer k, Euler’s totient function ϕ(k) is defined as the number of positive integers
less than or equal to k and relatively prime to k. For example, ϕ(9) = 6, ϕ(24) = 8, and ϕ(1) = 1.
(As a reminder, the greatest common divisor (gcd) of two positive integers a and b is the greatest
positive integer that divides both a and b. Two positive integers are relatively prime if their gcd is
1.)

Euler’s product formula gives the value of ϕ(k) in terms of the prime factorization of k. For a prime
p, let νp(k) be the highest power of p which divides k (so for example, ν2(48) = 4, ν3(48) = 1,
and ν5(48) = 0). If k is a product of powers of prime factors, k =

∏j
i=1 p

νpi (k)

i (where the product
only includes primes pi with νpi(k) > 0), then

ϕ(k) =

j∏
i=1

[
(pi − 1)

(
p
νpi (k)−1

i

)]
.

A recent edition of The American Mathematical Monthly (Li et al., Positive Rational Numbers of
the Form ϕ(m2)/ϕ(n2), 128(2), 2021) proved the following fact about totient quotients: for any
pair of positive integers a, b there is a unique pair of positive integers m, n for which:

1. a
b
= ϕ(m2)

ϕ(n2)
;

2. if a prime p divides the product mn, then νp(m) ̸= νp(n);

3. gcd(m,n) is square-free: that is, for every prime p, gcd(m,n) is not divisible by p2.

Conditions 2 and 3 guarantee that m and n are the unique smallest pair of positive integers satis-
fying condition 1.

You’d like to verify this claim numerically. Write a program which takes as input two integers a
and b and outputs the corresponding pair m,n.

Input

The only line of input contains two space-separated integers a and b (1 ≤ a, b ≤ 10 000). These
two integers are guaranteed to be relatively prime. Additionally, a and b will be chosen so that
output values m and n are less than 263.

2025 ICPC North America Championship Problem A: A Totient Quotient 1

Output

Print the two positive integers m and n satisfying all three of the conditions of The American
Mathematical Monthly’s theorem, separated by a space. It is guaranteed that m,n < 263.

Sample Input 1 Sample Output 1

9 13 18 13

Sample Input 2 Sample Output 2

19 47 13110 18612

2025 ICPC North America Championship Problem A: A Totient Quotient 2

Problem B
Circle of Leaf

Time Limit: 3 Seconds, Memory Limit: 2G

Ouroboros from Wikimedia Commons

Your friend has given you a rooted tree: a connected graph with
N nodes and N − 1 edges. The nodes of the tree are numbered
from 1 to N , with node 1 being the root of the tree and other nodes
numbered arbitrarily.

However, you recently learned about the Ouroboros, an ancient
mythical snake that eats its own tail, signifying a cycle with no be-
ginning and end. You dislike the fact that the tree you were given
has a very clear beginning at the root, and clear ends at its leaves,
so you decide to completely change the structure of this tree into a
new graph which you have named an Ouroboros Graph.

To construct this Ouroboros Graph, you take the leaves of the tree
(the nodes with no direct children) and draw special “leaf” edges
that connect every leaf directly to the root. If there is already an edge connecting a leaf to the
root, you still add a duplicate edge.

With this special graph structure, you can now create lots of different trees by removing some
subset of edges, and in the spirit of Ouroboros, the leaves and roots can change depending on
which subset of edges you remove. How many different trees can you make by removing a subset
of edges from the Ouroboros Graph? Two trees are considered different if one tree has an edge that
the other tree does not. (If both a regular and a “leaf” edge connect the same pair of nodes, then
they are distinguishable from each other and are considered different edges.) Since the number of
trees can be large, compute the answer modulo 998 244 353.

Input

The first line of input contains a single integer N (2 ≤ N ≤ 200 000), the number of nodes in the
tree.

Each of the next N − 1 lines contains two space separated integers a and b (1 ≤ a, b ≤ N)
specifying that an edge exists between parent node a and child node b in the tree. The input graph
is indeed guaranteed to be a tree: there is a unique path of edges between every pair of nodes in
the graph.

2025 ICPC North America Championship Problem B: Circle of Leaf 3

https://commons.wikimedia.org/wiki/File:Ouroboros-Zanaq.svg

Output

Print the number of different trees modulo 998 244 353 that can be created by removing some
subset of edges from the input tree’s Ouroboros Graph.

Sample Explanation

In the diagram below, the left subfigure illustrates the Ouroboros Graph corresponding to Sample
Input 1, with the original edges of the tree drawn in black and the “leaf” edges dashed in red. The
tree on the right illustrates one of the 72 possible different trees that can be formed by deleting
some subset of edges from the Ouroboros Graph: in this case, original edges 6–5 and 1–3 and
“leaf” edges 1–8 and 1–4 were deleted.

Sample Input 1 Sample Output 1

8
1 3
3 2
1 4
1 7
7 6
6 5
6 8

72

2025 ICPC North America Championship Problem B: Circle of Leaf 4

Problem C
Entrapment

Time Limit: 5 Seconds, Memory Limit: 2G

Entrapment is an asymmetric two-player game that is played on a 3 × 3 square grid. The two
players are called the Runner and the Trapper. The grid squares are numbered from 1 to 9 as
depicted below:

1 2 3

4 5 6

7 8 9

Before starting the game, the players agree on the number of rounds that the game will last, and on
the starting state of the game board. Up to 8 of the grid squares can be marked as unavailable. The
players also choose who will be the Runner and who will be the Trapper. The Runner then secretly
chooses a starting square from among those that are available (i.e., are not marked as unavailable)
but does not tell the Trapper their choice.

Each of the game rounds consists of the following steps, in order:

1. The Trapper publicly chooses some subset of the available squares (the empty set is allowed)
and asks the Runner, “Are you currently in any of these squares?”

2. The Runner answers truthfully whether or not they are in any of the chosen squares.

3. The Trapper publicly chooses exactly one available square. That square becomes unavailable
for the rest of the game. (The Runner might currently reside in that square; if so, nothing
special happens.)

4. The Runner secretly moves from their current square to an available orthogonally-adjacent
square. If no such square exists, the Runner announces that they are trapped and the Trapper
wins the game.

If the Runner has not been trapped by the end of the last round, they prove to the Trapper that they
answered all questions truthfully by revealing their choice of starting square and the move that they
made during each round. The Runner then wins the game.

Because the Runner’s initial choice of square is secret, as are all of their subsequent moves, the
Runner is allowed to “cheat” by not truly committing to a square. At the end of the game, if the
Runner can produce a choice of starting square and subsequent moves that do not result in being
trapped and are consistent with the answers to the Trapper’s questions during each round, that is
enough for the Runner to win the game.

2025 ICPC North America Championship Problem C: Entrapment 5

Interaction

This is an interactive problem. Given the number of game rounds and the set of squares that are
initially marked unavailable, determine whether the Runner or the Trapper would win assuming
optimal play, and then prove it by playing as that role against the judge. The judge will obey all
game rules, but may or may not play optimally.

Interaction starts by reading a line of 2 space-separated integers R and U (1 ≤ R ≤ 9, 0 ≤ U ≤ 8,
R + U ≤ 9): the number of rounds in the game and the number of squares that are unavailable at
the start of the game.

Next, if U > 0, read a line of U space-separated integers s (1 ≤ s ≤ 9): the labels of the squares
that are unavailable at the start of the game. Please refer to the diagram above for how the squares
in the grid are labeled. The U labels are guaranteed to be distinct.

Determine whether the Runner or Trapper would win the game with optimal play, given the starting
board and number of game rounds. Print a line of output with the string Runner if the runner wins
with optimal play, and the string Trapper otherwise. You will play as that role for the rest of the
game; please see the appropriate section below for further instructions on how to interact with the
judge in that role.

For the Runner, repeat the following steps R times:

• Read a line of input with a single integer N : the size of the subset of available squares that
the Trapper has chosen to ask about. N is guaranteed to be between 0 and the number of
available squares left on the board, inclusive.

• If N > 0, read a line of N space-separated integers ℓ (1 ≤ ℓ ≤ 9) listing the labels of the
squares in the Trapper’s chosen subset. The labels are guaranteed to be distinct and all of the
chosen squares are guaranteed to be available.

• Print a line of output containing either the string Yes or the string No. The former informs
the trapper that you are currently in one of the chosen squares; the latter informs the trapper
that you are not.

• Read a line with a single integer i (1 ≤ i ≤ 9), the label of the square that the Trapper marks
as unavailable. It is guaranteed that square i is a formerly-available square.

• Print a line with the string Free to inform the Trapper that you have secretly moved to an
orthogonally-adjacent available square and are ready to proceed to the next round. If there
are no orthogonally-adjacent squares available, you must print Trapped instead and exit;
your submission will be judged incorrect for having failed to elude the Trapper.

2025 ICPC North America Championship Problem C: Entrapment 6

After you have played R rounds of the game according to the protocol above, print a line with
R + 1 space-separated integers. The first integer is the label of your chosen starting square; each
of the next R integers are the labels of the squares onto which you moved at the end of each of
the R rounds. Your moves must be legal and must be consistent with the answers you gave to the
Trapper’s queries during each round of play. After printing this line, your program must exit.

For the Trapper, repeat the following steps R times:

• Print a line with a single integer N : the size of the subset of available squares that you would
like to ask the Runner about.

• If N > 0, print a line of N space-separated integers listing the available squares to ask the
Runner about. You may list the labels in any order, but the labels must be distinct and must
refer to available squares.

• Read a line of input containing a single string: Yes if the Runner is in one of your chosen
squares, or No otherwise.

• Print a line with a single integer i: the square that you are marking unavailable. The label i
must be a valid currently-available square.

• Read a line with a single string: Free if the Runner has moved to an available square, or
Trapped if they were unable to do so. After reading the word Trapped, you have won
the game, and your program must exit. If you read the word Free at the end of the Rth
round, your program must also exit, though your submission will be judged incorrect since
you have failed to trap the Runner.

The judge is guaranteed to answer all questions truthfully.

Notes

Do not forget to flush the output stream after each line that you print and to cleanly exit after
the interaction is done. Please also make sure that you follow the above interaction protocol exactly
regarding what information to print on which line of output: for example, if the protocol requires
you to print a list of space-separated integers on a single line, the judge will not accept each integer
on its own line.

If the judge receives invalid or unexpected input, it will print −1 and then immediately exit. Your
program must detect this error report and cleanly exit in order to receive a Wrong Answer verdict.
If your program blocks waiting for further interaction from the judge, or tries to interpret the −1
as a game move, you may receive a different rejected verdict (such as Time Limit Exceeded or
Runtime Error) instead of Wrong Answer.

2025 ICPC North America Championship Problem C: Entrapment 7

You have been provided with a command-line tool for local testing. The tool has comments at the
top to explain its use.

Read Sample Interaction 1 Write

3 6
1 2 3 7 8 9

Trapper
2
4 5

Yes

5

Free

0

No

6

Trapped

Read Sample Interaction 2 Write

2 0

Runner

7
3 1 2 8 9 4 5

Yes

5

Free

4
4 6 7 8

Yes

7

Free
5 4 1

2025 ICPC North America Championship Problem C: Entrapment 8

Problem D
Geometry Rush

Time Limit: 1 Second, Memory Limit: 2G

You are playing the summer’s hottest rhythm-based action platformer—Geometry Rush! The game
is played on a 2D plane. Your character begins at (0, 0) and every second must move at a 45-degree
angle either up-right or down-right, which takes your character from position (x, y) to (x+1, y+1)
or (x + 1, y − 1) respectively. You can change which direction you move every second, but not
in between moves. There are obstacles protruding from the floor and ceiling that you must dodge.
You win the game if, after w seconds, you reach the line x = w without having touched any
obstacles on the way.

The play area extends vertically from y = −h to y = h. Obstacles are two polygonal curves: one
curve starts at (0, h) and ends at (w, h) and represents a ceiling of varying height. The x values of
the vertices of this curve are non-decreasing, and the y values lie between −h and h inclusive. A
second polygonal curve starts at (0,−h) and ends at (w,−h) and represents the floor. Its vertices
satisfy similar constraints.

Your character is a point of negligible extent: you can move from position (x, y) to (x+ 1, y ± 1)
so long as the line segment between your start and end position does not intersect either obstacle.
(Exactly touching either polygonal curve counts as intersecting an obstacle, and loses the game.)

You have played a lot of games of Geometry Rush. To keep the game interesting, you have started
to set challenges for yourself. For example: you win the game no matter where you cross the
x = w goal line. But for what maximum value of y can you win the game by crossing at (w, y)
without touching any obstacles on the way? For what minimum value? Compute these numbers.

Input

The first line of the input contains four space-separated integers n, m, w, and h. The first two
integers (3 ≤ n,m ≤ 105) are the number of vertices in the ceiling and floor polygonal curves,
respectively. The second two integers (3 ≤ w, h ≤ 105) are the width and height of the play area,
as described above.

The next n lines each contain two space-separated integers x and y (0 ≤ x ≤ w; −h ≤ y ≤ h):
the coordinates of the vertices of the ceiling polygonal curve, in order from left to right. It is
guaranteed that the first vertex is at (0, h) and the last vertex is at (w, h).

The next m lines each contain two space-separated integers x and y (0 ≤ x ≤ w; −h ≤ y ≤ h): the
coordinates of the vertices of the floor polygonal curve, in order from left to right. It is guaranteed
that the first vertex is at (0,−h) and the last vertex is at (w,−h).

2025 ICPC North America Championship Problem D: Geometry Rush 9

For both polygonal curves: the x coordinates are non-decreasing, all vertices are distinct, and the
curve does not self-intersect. Neither curve intersects (0, 0). (The floor and ceiling curves might
intersect each other, in which case the game is unwinnable.)

Output

If it is impossible to win the game, print impossible. Otherwise, print two space-separated
integers: the minimum and maximum y values that the player could reach at x = w without losing
the game by touching an obstacle along the way.

Sample Input 1 Sample Output 1

4 4 5 5
0 5
0 2
5 2
5 5
0 -5
0 -2
5 -2
5 -5

-1 1

Sample Input 2 Sample Output 2

4 4 6 5
0 5
0 2
6 2
6 5
0 -5
0 -2
6 -2
6 -5

0 0

2025 ICPC North America Championship Problem D: Geometry Rush 10

Sample Input 3 Sample Output 3

3 3 7 5
0 5
5 -1
7 5
0 -5
2 1
7 -5

impossible

Sample Input 4 Sample Output 4

4 3 5 5
0 5
0 2
5 2
5 5
0 -5
3 -1
5 -5

-1 1

2025 ICPC North America Championship Problem D: Geometry Rush 11

This page is intentionally left blank.

Problem E
Humans vs AI

Time Limit: 5 Seconds, Memory Limit: 2G

In the world of rising AI, James is scared of losing his job. So, when his boss asks him to evaluate
a new AI model to see how well it performs compared to humans, he wants to make it look as bad
as possible.

To test the AI, James conducts a sequence of N trials where a human and an AI are given the same
task and then scored based on their performance on the task. He is then going to send the results
of some non-empty contiguous subsequence of these trials to his boss and quietly delete the rest.

Let ai and hi be the performance of the AI and human on trial i, respectively. James’s boss
evaluates the AI on a sequence of trials by calculating two total scores: one for the humans, and
one for the AI. Both scores are initially 0. For each trial i where hi ≥ ai, the boss awards the
humans hi − ai points. For each trial where hi < ai, the AI earns ai − hi points. If the humans’
total score is greater than or equal to the AI’s total score times some constant k (to account for
humans needing food, water, and a desk), James’s boss declares that the humans outperform the
AI.

James plans to send his chosen subsequence of test results through email to his boss. There is,
however, one complication: since AI is already all-knowing and all-pervasive, it intercepts this
email and may swap the value of hi and ai for one trial i of its choice. (It doesn’t want to swap
more than one trial result—James might notice!)

Count how many non-empty contiguous subsequences of trial results James could send his boss
with the guarantee that humans will be declared to outperform the AI, even if the AI swaps the
result of up to one trial.

Input

The first line of input contains two space-separate integers: N (1 ≤ N ≤ 2 · 105), the total number
of trials James conducted, and k (1 ≤ k ≤ 100), the multiplier James’s boss will apply to the AI’s
total score to determine whether humans outperform AI.

The second line contains N space-separated integers h1, h2, . . . , hN (0 ≤ hi ≤ 106), the perfor-
mance of the humans on each of the N trials.

The third line contains N space-separated integers a1, a2, . . . , aN (0 ≤ ai ≤ 106), the performance
of the AI on the N trials.

2025 ICPC North America Championship Problem E: Humans vs AI 13

Output

Print the number of non-empty contiguous trial subsequences for which James’s boss would de-
clare that humans outperform AI, even if the AI swaps the result of up to one trial.

Sample Input 1 Sample Output 1

10 2
3 5 7 6 8 6 4 5 2 6
2 4 6 5 4 3 3 6 3 4

4

Sample Input 2 Sample Output 2

7 1
4 3 2 1 7 6 5
4 2 3 1 7 6 5

11

2025 ICPC North America Championship Problem E: Humans vs AI 14

Problem F
Mob Grinder

Time Limit: 5 Seconds, Memory Limit: 2G

In a certain popular sandbox video game, one can build a structure called a mob grinder. A mob
grinder consists of an N × M rectangular grid of tiles. Monsters, also known as “mobs,” appear
continuously at random places on the grid. The goal of a mob grinder is to move all of the monsters
to the top-right tile in the grid, no matter where they originally appear. To accomplish this goal,
each tile (except for the top-right tile) has a conveyor belt on it with a specified direction (up, right,
down, or left). A monster on a conveyor belt gets moved to the orthogonally adjacent tile in the
direction specified by the conveyor belt orientation.

Your job is to place a conveyor belt on each tile (other than the top-right corner) so that no matter
where a monster appears on the grid, it will get moved to the top-right corner after a finite amount
of time, without ever leaving the bounds of the grid. However, there is a limit on how many
conveyor belts you can use of each orientation: your final design must have exactly U conveyor
belts going up, R going right, D going down, and L going left.

You are asked to design multiple mob grinders, each with a specification of how many conveyor
belts of each type you are allowed to use. Design a valid mob grinder that meets each specification,
if possible.

Input

The first line of input contains an integer T (1 ≤ T ≤ 105): the number of mob grinders you need
to design.

Each of the next T lines of input contains six space-separated integers that describe one mob
grinder specification. The first two integers, N and M , (1 ≤ N,M and N · M ≤ 105) are the
number of rows and columns in the grid, respectively. The last four, U , R, D, L (0 ≤ U,R,D,L
and U + R + D + L = (N ·M) − 1), are the number of times you must use each conveyor belt
orientation in your design.

It is guaranteed that the sum of N ·M over all T mob grinders does not exceed 105.

2025 ICPC North America Championship Problem F: Mob Grinder 15

Output

Print T mob grinder designs, one for each specification. Separate consecutive designs with a single
empty line.

If it is impossible to construct a valid mob grinder respecting the given constraints for the given
specification, print impossible. Otherwise, print an N ×M grid of ASCII characters. The top-
right tile must be a *. Every other character in the grid must be either U, R, D, or L, representing
the orientation of the conveyor belt on that grid tile.

This problem is whitespace-sensitive. You must separate each mob grinder design with exactly
one empty line (containing just a newline character). You must not print an empty line, or any
other extraneous output, after the last mob grinder design (though the last line of output must be
terminated with a newline). Please see the Sample Output for examples of how to correctly format
your mob grinder designs.

Sample Input 1 Sample Output 1

2
4 3 5 3 1 2
1 2 0 1 0 0

RR*
URU
UDU
ULL

R*

Sample Input 2 Sample Output 2

3
3 3 0 0 0 8
2 2 0 2 0 1
1 1 0 0 0 0

impossible

impossible

*

2025 ICPC North America Championship Problem F: Mob Grinder 16

Problem G
Most Scenic Cycle

Time Limit: 7 Seconds, Memory Limit: 2G

The government of the Independent Country of Problem Creators (ICPC) finally saved enough
money to construct high speed rail infrastructure. The new rail system has V stations and E
bidirectional direct railway lines that each connect two stations together. The head of ICPC Rail
Infrastructure Planning, Skib E. Dee, has seen enough programming problems about tree-topology
transportation networks in other countries to know that such a network would be a recipe for
disaster: a single broken railway line would split the network into disconnected pieces and disrupt
travel for days. Instead, Dee decided that the ICPC rail network will be robustly connected: every
pair of stations s1, s2 must be connected by at least two paths which do not share any direct railway
lines, and do not share any railway stations other than s1 and s2 themselves.

Of course, ICPC cannot afford to build too many redundant railway lines. To balance efficiency
and resiliency, Dee has also designed the network to be regionally connected. A cycle is a non-
empty path from a station to itself which doesn’t repeat any railway station (apart from the first
station, which must repeat exactly once as the last station of the cycle). In order for the network
to be regionally connected, there must exist a set F of E − V + 1 regional cycles satisfying three
properties:

• every direct railway line in the transportation network belongs to at least one regional cycle;

• if two regional cycles share any direct railway lines, then all railway lines and stations shared
by those cycles lie along a connected path;

• for each subset f of F , at most |f | − 1 pairs of regional cycles in f share any direct railway
lines.

To promote the new high speed rail, Dee needs to create a timelapse video of a train travelling
around some cycle in the railway network. Each direct railway line has a (possibly negative) scenic
value representing how nice the view out the train window is along that line. Dee wants to send
the train around whichever cycle maximizes the sum of scenic values of the direct railway lines on
the cycle—compute this maximum possible sum. (The most scenic cycle that Dee is looking for
does not have to be a regional cycle.) In order to ensure this cycle is not boring, it must traverse at
least two direct railway lines, and must not repeat any railway station (apart from the first station,
which must repeat exactly once as the last station of the cycle).

2025 ICPC North America Championship Problem G: Most Scenic Cycle 17

Input

The first line of input contains two space-separated integers V (2 ≤ V ≤ 2 · 105) and E (V ≤ E ≤
4 · 105), the number of stations and direct railway lines in the rail network, respectively.

The next E lines of input describe the direct railway lines. Each line contains three space-separated
integers a, b, and s (1 ≤ a, b ≤ V ; −109 ≤ s ≤ 109), signifying that a direct railway line exists
between stations a and b with scenic value s. No direct railway line connects a station to itself, but
multiple direct railway lines might exist between the same two stations. It is guaranteed that
the input graph will be both robustly connected and regionally connected.

Output

Print the sum of scenic values around the cycle in the railway network that maximizes this sum.

Sample Explanation

For the railway network in Sample Input 2, one possible choice for the regional cycles in F are
1 → 2 → 5 → 1, 2 → 5 → 3 → 2, and 3 → 4 → 5 → 3 (pictured on the left). The most scenic
cycle (pictured on the right, in blue) has a scenic value sum of 9 + 6 + 3− 2 = 16.

2025 ICPC North America Championship Problem G: Most Scenic Cycle 18

Sample Input 1 Sample Output 1

6 9
1 2 9
2 3 9
3 4 9
3 4 -9
4 1 9
1 5 1
5 6 1
6 2 1
3 4 8

36

Sample Input 2 Sample Output 2

5 7
1 2 1
2 3 -2
3 4 3
4 5 6
5 1 4
5 3 2
2 5 9

16

2025 ICPC North America Championship Problem G: Most Scenic Cycle 19

This page is intentionally left blank.

Problem H
Ornaments on a Tree

Time Limit: 4 Seconds, Memory Limit: 2G

You’re helping your friend decorate their Christmas tree! Funnily enough, the places to put your
ornaments on their Christmas tree can be represented by a (graph-theoretic) tree with nodes labeled
1 to N , with node 1 being the root of the tree and other nodes numbered arbitrarily. You have an
infinite supply of ornaments of every non-negative integer weight (including 0), and you must
place exactly one ornament on each node of the tree.

However, your friend has some restrictions on how they want their tree decorated. First, they have
strong opinions about which ornament must go on some of the tree nodes; you are only allowed to
choose decorations on the other nodes. Second, each region of their tree can support only so much
weight: if the sum of the weights of the ornaments on a node and all of its immediate children
exceeds a constant K, the whole tree will come crashing down!

Your friend wants to know the largest possible total weight of ornaments on their tree, given the
above restrictions. Can you help them find out?

Input

The first line of input has two space-separated integers N and K (1 ≤ N ≤ 2 · 105, 0 ≤ K ≤ 109),
the number of nodes in the tree and the weight constant, respectively.

The next line contains N space-separated integers. The ith integer (starting at i = 1) is either −1
or a non-negative integer. If it is −1, you are free to choose any ornament for node i. If it is a
non-negative integer wi (0 ≤ wi ≤ 109), your friend insists you place an ornament with weight wi

on node i.

The next N − 1 lines each contain two space-separated integers a and b (1 ≤ a, b ≤ N), indicating
that nodes a and b are connected by an edge. The input graph is guaranteed to be a tree: there is a
unique path of edges between every pair of nodes in the graph.

Output

If it is impossible to place ornaments on the tree in a way that satisfies all of the constraints de-
scribed above, print −1. Otherwise, print the maximum possible total weight of the ornaments on
the tree, subject to the constraints.

2025 ICPC North America Championship Problem H: Ornaments on a Tree 21

Sample Input 1 Sample Output 1

5 10
-1 2 3 -1 -1
1 2
1 3
2 4
2 5

18

Sample Input 2 Sample Output 2

1 5
-1

5

Sample Input 3 Sample Output 3

2 5
5 5
1 2

-1

2025 ICPC North America Championship Problem H: Ornaments on a Tree 22

Problem I
Polygon Partition

Time Limit: 3 Seconds, Memory Limit: 2G

A simple polygon is a polygon that is not self-intersecting and does not contain any holes. You are
given the N vertices of a simple polygon, v1, v2, . . . , vN , where vi = (xi, yi), and xi and yi are the
x-coordinate and y-coordinate of the ith vertex, respectively. The vertices are distinct and given in
counterclockwise order (so there is an edge between each pair of consecutive vertices; there is also
an edge from vN back to v1).

The polygon’s boundary does not pass through any lattice points (a lattice point is a point where
both coordinates are integers). In addition, none of the xi or yi values are exactly an integer.

A semi-integer point is a point where exactly one of its coordinates is an integer. Let P =
{p1, p2, . . . , pk} be all of the semi-integer points that lie on the boundary of the polygon. For
each semi-integer point pi in P , let ni be the floor of the non-integer coordinate of pi. For a subset
S of P , let σ(S) be the sum of the ni of the points in S (with σ(∅) = 0). Does there exist a partition
of P into two subsets S1 and S2 so that the σ(S1) = σ(S2)?

(Two sets S1 and S2 are a partition of P if P = S1 ∪ S2 and S1 ∩ S2 = ∅. There are no other
restrictions on S1 and S2 so long as these two conditions hold and σ(S1) = σ(S2). In particular,
empty sets are allowed, and the semi-integer points in each set do not have to be contiguous around
the polygon boundary.)

Input

The first line of input contains one integer N (3 ≤ N ≤ 500), the number of vertices of the
polygon.

Each of the next N lines contains two space-separated real numbers xi and yi (−500 < xi, yi <
500): the coordinates of the polygon vertices, in counterclockwise order. Each coordinate will
have exactly 6 digits after the decimal point and will not be exactly an integer.

It is guaranteed that the polygon does not self-intersect, that the vertices are distinct, and that the
polygon boundary does not pass through any lattice points.

2025 ICPC North America Championship Problem I: Polygon Partition 23

Output

If there is no solution, print −1 and no further output.

Otherwise, print a single integer M on its own line: the number of semi-integer points in one of
the two subsets in a valid partition of P . On the next M lines of output, print the values ni for the
points in that subset, one per line.

If there are multiple valid partitions, you may choose any of them. You may print either of its two
subsets, and you may list the subset’s ni values in any order.

Sample Explanation

Sample Input 1 is shown in the image below:

The points of the vertices are labeled A,B,C,D. The semi-integer points are marked in orange
and labeled pi going counterclockwise around the perimeter starting from A. The values ni of the
semi-integer points are, in the same order, −1, 0, 0,−1,−1,−1. Any subset of those values that
sum to −2 would be accepted as correct. Sample Output 1 shows one possible correct answer.

The boundary of the polygon in Sample Input 2 does not intersect any semi-integer points, so P is
empty, and it can be partitioned into two empty sets each with ni sum of zero.

2025 ICPC North America Championship Problem I: Polygon Partition 24

Sample Input 1 Sample Output 1

4
-0.950000 -0.850000
-0.100000 0.999999
0.111000 0.555000
-0.200000 1.600000

3
0
-1
-1

Sample Input 2 Sample Output 2

3
0.500000 0.700000
0.100000 0.200000
0.800000 0.900000

0

Sample Input 3 Sample Output 3

4
-360.000001 -24.000001
-359.999999 -24.000001
-359.999999 -23.999999
-360.000001 -23.999999

2
-25
-360

2025 ICPC North America Championship Problem I: Polygon Partition 25

This page is intentionally left blank.

Problem J
Popping Balloons

Time Limit: 15 Seconds, Memory Limit: 2G

The ICPC logo has three colors: blue, yellow, and red. The NAC volunteers have just inflated a
huge number of balloons in these colors and arranged them in a line. They next need to sort the
balloons by color before they can give them out to contestants.

Unfortunately, due to the Orlando heat, the balloons begin to randomly pop: each second, a ran-
dom remaining balloon pops (and the volunteers remove the debris from the line). This isn’t all
bad: maybe if the NAC volunteers wait long enough, the balloons will become sorted by chance?
Compute the expected number of seconds until the first time that all blue balloons come before
all yellow and red balloons, and all yellow balloons come before all red balloons. (These condi-
tions are satisfied even if they are vacuously true: for example, if there are no blue balloons at all
remaining, then it is true that all blue balloons come before all yellow and red balloons.)

Input

The input has one line: a string s (1 ≤ |s| ≤ 2 · 105) where each character is one of B, Y, or R
representing blue, yellow, and red respectively —the colors of the initial balloons in the line.

Output

Print the expected number of seconds that elapse before the first time that all blue balloons come
before all yellow and red balloons, and all yellow balloons come before all red balloons. Since this
number might not be an integer, print it modulo 998 244 353.

Formally, let p = 998 244 353. It can be shown that the answer can be expressed as an irreducible
fraction a

b
, where a and b are non-negative integers and b ̸≡ 0 (mod p). Print the integer x with

0 ≤ x < p and x ≡ a · b−1 mod p.

2025 ICPC North America Championship Problem J: Popping Balloons 27

Sample Explanation

In Sample Input 1, the expected time until the balloon colors first become sorted in the correct
order is 17

6
= 2 · 1

6
+ 3 · 5

6
seconds: the only way for the balloon colors to be sorted correctly after

2 seconds is if the first two balloons to pop are the yellow and red balloon (in either order). The
probability that these balloons pop before either blue balloon is 1

6
. Otherwise (with probability 5

6
)

the balloon colors will automatically be sorted after 3 seconds, when there is only one balloon left.
Since 6−1 ≡ 166 374 059 (mod p), the answer is 17 · 166 374 059 ≡ 831 870 297 (mod p).

Sample Input 1 Sample Output 1

RYBB 831870297

Sample Input 2 Sample Output 2

YRBBR 598946615

2025 ICPC North America Championship Problem J: Popping Balloons 28

Problem K
SLA Tomography

Time Limit: 1 Second, Memory Limit: 2G

Stereolithography (SLA) is a 3D printing technique for hardening liquid material into a solid object
one layer at a time using a laser. In this problem, we will consider a 2D simplification of SLA
where the design of the object being printed can be represented as a rectangular grid of ‘#’ and
‘.’ characters, where ‘#’ represents a grid cell occupied by the object and ‘.’ is empty space. For
example, here is a 4× 8 design:

..#.....

..#..#..
#.#.##..
#.#####.

A design does not have to consist of a single connected piece, but except for ‘#’ cells on the bottom
row of the design, each ‘#’ cell must be supported by another ‘#’ cell directly below it.

Printing an object using SLA proceeds layer-by-layer, starting from the bottom row. First, all
cells in the row are flooded with a liquid photosensitive resin. Then a laser sweeps over the row,
hardening the resin in all ‘#’ cells into a solid and skipping all ‘.’ cells. Then, leftover liquid to
the left of the leftmost ‘#’ and to the right of the rightmost ‘#’ drains away. Other liquid remains
trapped. (If there are no ‘#’ cells in the row—which can only happen for rows near the top of
the design, after the object has been fully printed—all liquid drains away from the row.) This
process then repeats for each subsequent row. For the design above, after printing is complete,
resin remains trapped in all of the cells marked with a ‘∼’ character below:

..#.....

..#~~#..
#~#~##..
#~#####.

2025 ICPC North America Championship Problem K: SLA Tomography 29

While manually suctioning the leftover resin from the object, you start to wonder: how much of
the original design can be recovered from knowing only how much liquid resin is left over in each
row of the design after printing? For the above design, the amount of leftover resin in each row
(starting from the top of the design) is 0, 2, 2, 1. Other designs also have the same leftover-resin
fingerprint; for example:

....
#..#
#..#
#.##

Given a list of how many cells of liquid resin are left over in each row (starting from the top row),
print the width of the narrowest object design whose rows would contain those amounts of liquid
resin after printing. If no such design exists, print impossible.

Input

The first line of input contains a single integer N(1 ≤ N ≤ 105), the number of rows in the object
design. N lines follow, each containing a single integer x (0 ≤ x ≤ 109), the number of cells of
leftover liquid resin in each row of the desired object design (in order from top to bottom).

At least one row will have at least one leftover cell of liquid resin.

Output

Print the width (number of columns) in the narrowest object design whose number of leftover
liquid resin cells in each row matches the input. (“Narrowest” means having the smallest possible
number of columns). If no such design exists, print impossible instead.

Sample Explanation

Sample Input 1 corresponds to the example above. One narrowest-possible design for Sample
Input 2 is:

#....#.....
######.....
######....#

2025 ICPC North America Championship Problem K: SLA Tomography 30

Sample Input 1 Sample Output 1

4
0
2
2
1

4

Sample Input 2 Sample Output 2

3
4
0
4

11

2025 ICPC North America Championship Problem K: SLA Tomography 31

This page is intentionally left blank.

Problem L
Solar Farm

Time Limit: 1 Second, Memory Limit: 2G

You are building a new solar farm. The area in which you are allowed to build is a circular field of
radius r, and the solar panels each take up a rectangular space of size w×h. You must place all the
panels in the same orientation of your choice in a single rectangular array (so that all of the panels
combined exactly form a single rectangle). What is the maximum number of panels that you can
fit in this farm?

Input

The first line of input contains a single integer T (1 ≤ T ≤ 1 000). This is the number of test cases.

The next T lines of input each represent one test case and consist of three space-separated integers
r, w, and h (1 ≤ r, w, h ≤ 109): the radius of the field, the width of each solar panel, and the
height of each solar panel, respectively.

Output

For each test case, print a line with a single integer: the maximum number of solar panels that can
be placed in a solar farm within the circular field.

Sample Explanation

The diagram below illustrates one optimal layout of solar panels for each of the three test cases in
Sample Input 1 (from left to right).

2025 ICPC North America Championship Problem L: Solar Farm 33

Sample Input 1 Sample Output 1

3
5 4 3
2 2 2
8 1 5

4
1
24

Sample Input 2 Sample Output 2

2
500000003 1 600000010
511374200 637192506 100000000

799999999
7

2025 ICPC North America Championship Problem L: Solar Farm 34

Problem M
This Is Sparta!

Time Limit: 1 Second, Memory Limit: 2G

King Primonidas is putting together a tournament to find the strongest gladiator in all the lands.
In total N gladiators have made their way to the Coliseum to bring back honor and glory to their
hometowns. Each gladiator starts with a certain amount of vitality. Vitality is similar to health
points in that it reflects the amount of damage a gladiator can take, but it also represents the amount
of damage they can deal (since energy is needed for strong blows).

The tournament consists of K rounds. Every round, the king arranges the gladiators in a line from
least to most remaining vitality, breaking ties randomly. King Primonidas believes that the true
strength of a gladiator lies in their ability to take a beating, so he orders the first gladiator (the one
with the lowest remaining vitality) to deal their strongest blow to the second gladiator. This blow
subtracts the first gladiator’s vitality from the second gladiator’s vitality. After the second gladiator
takes the hit, they deal their strongest blow (using their new, lowered vitality) to the third gladiator,
and so on. This process repeats until the second-to-last gladiator deals their strongest blow to the
last gladiator (who doesn’t get to attack anybody).

Notice that in the above process, a gladiator’s vitality can never go below zero. (A gladiator with
zero vitality deals a feeble blow of no damage to the next gladiator.)

Print the vitality of each gladiator after K tournament rounds, in order from the first to the last
gladiator in line.

Input

The first line of input contains two space-separated integers N (2 ≤ N ≤ 105) and K (1 ≤ K ≤
1018): the number of gladiators and the number of rounds in the tournament.

The next line of input contains N space-separated integers v1 v2 . . . vN (0 ≤ vi ≤ 1018): the
starting vitality of the gladiators.

Output

Print N space-separated integers: the vitality of the gladiators at the end of the Kth round of the
tournament, in the order that the gladiators currently stand in line.

2025 ICPC North America Championship Problem M: This Is Sparta! 35

Sample Input 1 Sample Output 1

6 3
21 28 24 23 1 12

1 1 3 6 3 10

Sample Input 2 Sample Output 2

3 1000
8 2 10

0 0 2

2025 ICPC North America Championship Problem M: This Is Sparta! 36

