
Problem A
Fancy Antiques

You are hosting a fancy party for fancy friends. And, like any fancy party, you need to buy some
fancy antiques to put up around the venue (your house).

There is a set of n fancy antiques that you need to buy. And there is a set of m fancy antique shops
in the city. Because these antiques are extremely rare, each fancy antique can only be found at a
single fancy antique shop. However, the fancy antique shops can also sell “knock-off” (duplicate)
versions of some of the antiques. And of course, for any fancy antique, there is only a single
fancy antique shop in the city that holds a knock-off version of that antique (this is to maintain the
rareness of the antiques). The shop that sells the original is not always the same shop that holds
the knock-off.

It turns out that even though you can tell the difference, most people cannot tell the original version
from the knock-off version of any given antique. And, because the shops can get away with it,
sometimes the knock-off is more expensive than the original! Since the party is tomorrow, you
only have time to visit k shops. You would like to buy one version (either the original or the
knock-off) of each of the n antiques.

Suppose that there are three shops, and three antiques we would like to buy.

• Antique #1 sells for 30 at shop #1. Its knockoff sells for 50 at shop #2.

• Antique #2 sells for 70 at shop #2. Its knockoff sells for 10 at shop #3.

• Antique #3 sells for 20 at shop #3. Its knockoff sells for 80 at shop #1.

Suppose you only have time to go to two shops. You can go to shops 1 and 3. You can buy the
original of antique 1 with cost 30 at shop 1, the original of antique 3 with cost 20 at shop 3, and
the knock-off of antique 2 at shop 3 with cost 10. The total cost to buy these items is 60, which is
the minimum possible.

If you only have time to visit one shop, then it is impossible. You cannot buy a version of all three
items by visiting a single shop.

Given the costs of the antiques/knock-offs at the shops, what is the minimum total cost to buy one
version of each antique?

North American Invitational Programming Contest 2016 Problem A: Fancy Antiques 1

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The first line of input will consist of three space-separated integers: n, m, and k
(1 ≤ n ≤ 100, 1 ≤ k ≤ m ≤ 40). The next n lines will each have four space separated integers,
a, p, b and q, describing an antique, where:

• a is the index of the shop that sells the original version of the antique (1 ≤ a ≤ m)

• p is the price of the original version of the antique at shop a (1 ≤ p ≤ 107)

• b is the index of the shop that sells the knock-off version of the antique (1 ≤ b ≤ m)

• q is the price of the knock-off version of the antique at shop b (1 ≤ q ≤ 107)

Output

If it is possible to collect all of the antiques while visiting no more than k stores, then output the
minimum cost. If it is not possible, output −1.

Sample Input 1 Sample Output 1

3 3 2
1 30 2 50
2 70 3 10
3 20 1 80

60

Sample Input 2 Sample Output 2

3 3 1
1 30 2 50
2 70 3 10
3 20 1 80

-1

North American Invitational Programming Contest 2016 Problem A: Fancy Antiques 2

Problem B
Alternative Bracket Notation

Balanced closed bracket or parenthesis statements are ones where each opening bracket is matched
with a closed bracket later in the string.

Notice how each closed parenthesis matches to the most recent unmatched open parenthesis.

Define an alternative bracket notation as follows: each bracket pair corresponds to a header in
the form of “start,end:” where start and end are indices of the new string itself! The index start
is the index of the character immediately after the ‘:’, and end is the index past the last header
corresponding to the last bracket pair contained in this bracket pair. By taking a substring(start,
end) of the new notation, you get an alternative bracket sequence describing all of the pairs of
brackets contained by the brackets corresponding to the “start,end:”! Since an empty pair of
brackets has nothing inside, in their header, start and end will be the same.

Each index takes up as many characters in the string as they do when they are base 10 numbers.
(For example, the index 42 will take up 2 characters). The indices in the new string start from
0. All of the indices found in the alternative bracket notation string are absolute indices from the
beginning of the new string.

Consider this parenthetical statement: (())

Here is it, in our new, alternate bracket notation: 4,8:8,8:

In this example, there are two sets of matching parenthesis, the outer one and the inner one. The
outer one appears before the inner one, since the start bracket appears first. So, the header for the
outer brackets will appear before the header for the inner bracket. The header 4,8: represents
the outer bracket, while the header 8,8: represents the inner bracket. The substring from the 4th
character to 7th character is 8,8:, which represents what is contained inside the outer bracket.
Note that 5,11:11,11: could also be a legitimate alternate notation, but we want the shortest
one, which is why 4,8:8,8: is the correct answer.

North American Invitational Programming Contest 2016 Problem B: Alternative Bracket
Notation

3

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The input will consist of a single line, containing a string s, which consists only
of open and closed parentheses. The string s will be between 2 and 4,000 characters long. There
will be no spaces. The string s is guaranteed to be balanced.

Output

Output the string s in our new alternative bracket notation. If there’s more than one way to represent
s in the new notation, choose the shortest representation, which will be unique.

Sample Input 1 Sample Output 1

(()) 4,8:8,8:

Sample Input 2 Sample Output 2

() 4,4:

Sample Input 3 Sample Output 3

((())(()))() 5,29:11,17:17,17:23,29:29,29:35,35:

North American Invitational Programming Contest 2016 Problem B: Alternative Bracket
Notation

4

Problem C
Greetings!

Your greeting card company makes unique greeting cards. The sizes of these greeting cards vary
widely because of the whims of card designers. There are a lot of different types of cards, and each
has a specific quantity that you need to manufacture.

Your job is to determine what envelopes to order for these greeting cards. You have a strict limit on
the different number of different sizes of envelopes, which may be less than the number of distinct
sizes of cards. You need to have envelopes so that every card fits in some envelope, possibly with
room to spare, and the amount of waste paper is minimized. Measure the waste paper by the area
of the envelope that is in excess of the area of the card, for each card. For example, a 10 × 4 card
in a 10× 4 envelope has no wasted paper, but a 10× 4 card in a 12× 5 envelope has waste of 20.
You may not rotate the cards to fit them in the envelopes better.

Suppose that you have 5 types of cards: 10 × 10 (5 of these), 9 × 8 (10 of these), 4 × 12 (20 of
these), 12× 4 (8 of these), and 2× 3 (16 of these).

Now, suppose that you can only buy one type of envelope. Since all cards have to fit in that one
envelope size, the smallest envelope size you can use is 12×12, with an area of 144. The wastes by
each type of card are 144−10 ·10 = 44, 144−9 ·8 = 72, 144−4 ·12 = 96, 144−12 ·4 = 96, and
144−2 ·3 = 138, respectively. The total waste is 44 ·5+72 ·10+96 ·20+96 ·8+138 ·16 = 5836.

Suppose that you can buy 2 types of envelopes. The best you can do is to put the 10 × 10, 9 × 8
and 12× 4 cards in 12× 10 envelopes, and the 4× 12 and 2× 3 cards in 4× 12 envelopes. That
adds up to waste of 1828.

If you can buy 5 types of envelopes, then you can match one envelope type to each card type, and
there’s no waste!

Given a list of card types and the number of types of envelopes you can buy, what is the smallest
amount of wasted paper you can achieve?

Input

Each input will consist of a single test case. Note that your program may be run multiple times
on different inputs. The first line of the input will consist of two space-separated integers n and k
(1 ≤ n, k ≤ 15), where n is the number of different types of cards, and k is the maximum number
of types of envelopes you can order. Each of the following n lines will consist of three integers,
describing a type of card. The integers are w, h and q (1 ≤ w, h, q ≤ 10,000), where w is the width
of the cards of this type, h is the height of the cards, and q is the quantity of cards of this type.

North American Invitational Programming Contest 2016 Problem C: Greetings! 5

Output

Output a single integer, representing the smallest possible total amount of wasted paper.

Sample Input 1 Sample Output 1

5 1
10 10 5
9 8 10
4 12 20
12 4 8
2 3 16

5836

Sample Input 2 Sample Output 2

5 2
10 10 5
9 8 10
4 12 20
12 4 8
2 3 16

1828

Sample Input 3 Sample Output 3

5 5
10 10 5
9 8 10
4 12 20
12 4 8
2 3 16

0

North American Invitational Programming Contest 2016 Problem C: Greetings! 6

Problem D
Programming Team

UpCoder is looking to assign their best employees to a team tasked with designing their new and
improved website, and they’re looking to you to help them form the team. There are n potential
candidates. The CEO is employee number 0, and the candidates are all assigned employee numbers
ranging from 1 through n. Each candidate is recommended by an employee with a smaller em-
ployee number. Each candidate can be described by three numbers (in addition to their employee
number): their negotiated salary, their expected productivity, and the number of the employee who
recommended them.

You would like to assign exactly k candidates out of the n total candidates to the team. The total
value that you can get from these candidates is the sum of their productivities divided by the sum
of their salaries. Note that you may only assign a candidate to the team if their recommender is
also part of the team, or is the CEO. So, at least one candidate that you assign needs to have the
CEO as a reference. The CEO handles the business aspect of the company, so s/he will not be
counted as part of the k candidates chosen for the team.

Find the maximum total value your team can provide given these constraints.

Input

Each input will consist of a single test case. Note that your program may be run multiple times
on different inputs. The first line of the input will consist of two space separated integers k and n
(1 ≤ k ≤ n ≤ 2,500), where k is the size of the team you must form, and n is the total number
of employee candidates. Each of the following n lines will hold three space-separated integers
describing an employee. Employee 1 will be described first, then employee 2, and so on. The three
integers are s, p and r, where s (1 ≤ s ≤ 10,000) is the employee’s salary, p (1 ≤ p ≤ 10,000)
is the employee’s productivity, and r (0 ≤ r < i) is the employee number of the employee who
recommended this candidate (where i is the employee number of this candidate).

Output

Output a single real number, which represents the maximum total value you can achieve forming
a team of k employees, subject to the constraints of the problem. Output this number to exactly
three decimal places, rounded (standard 5 ↑ /4 ↓ rounding).

North American Invitational Programming Contest 2016 Problem D: Programming Team 7

Sample Input 1 Sample Output 1

1 2
1000 1 0
1 1000 1

0.001

Sample Input 2 Sample Output 2

2 3
1 100 0
1 200 0
1 300 0

250.000

North American Invitational Programming Contest 2016 Problem D: Programming Team 8

Problem E
K-Inversions

You are given a string s consisting only of upper case letters A and B. For an integer k, a pair of
indices i and j (1 ≤ i < j ≤ n) is called a k-inversion if and only if s[i] = B, s[j] = A and
j − i = k.

Consider the string BABA. It has two 1-inversions and one 3-inversion. It has no 2-inversions.

For each k between 1 and n− 1 (inclusive), print the number of k-inversions in the string s.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The input will consist of a single line with a string s, which consists of only upper
case As and Bs. The string s will be between 1 and 1,000,000 characters long. There will be no
spaces.

Output

Output n − 1 lines, each with a single integer. The first line’s integer should be the number of
1-inversions, the second should be the number of 2-inversions, and so on.

Sample Input 1 Sample Output 1

BABA 2
0
1

North American Invitational Programming Contest 2016 Problem E: K-Inversions 9

Sample Input 2 Sample Output 2

BBBBBAAAAA 1
2
3
4
5
4
3
2
1

North American Invitational Programming Contest 2016 Problem E: K-Inversions 10

Problem F
Mountain Scenes

An artist begins with a roll of ribbon, one inch wide. She clips it into pieces of various integral
lengths, then aligns them with the bottom of a frame, rising vertically in columns, to form a moun-
tain scene. A mountain scene must be uneven; if all columns are the same height, it’s a plain scene,
not a mountain scene! It is possible that she may not use all of the ribbon.

If our artist has 4 inches of ribbon and a 2× 2 inch frame, she could form these scenes:

She would not form these scenes, because they’re plains, not mountains!

Given the length of the ribbon and the width and height of the frame, all in inches, how many
different mountain scenes can she create? Two scenes are different if the regions covered by
ribbon are different. There’s no point in putting more than one piece of ribbon in any column.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The input will consist of a single line with three space-separated integers n, w and
h, where n (0 ≤ n ≤ 10,000) is the length of the ribbon in inches, w (1 ≤ w ≤ 100) is the width
and h (1 ≤ h ≤ 100) is the height of the frame, both in inches.

North American Invitational Programming Contest 2016 Problem F: Mountain Scenes 11

Output

Output a single integer, indicating the total number of mountain scenes our artist could possibly
make, modulo 109 + 7.

Sample Input 1 Sample Output 1

25 5 5 7770

Sample Input 2 Sample Output 2

15 5 5 6050

Sample Input 3 Sample Output 3

10 10 1 1022

Sample Input 4 Sample Output 4

4 2 2 6

North American Invitational Programming Contest 2016 Problem F: Mountain Scenes 12

Problem G
Symmetry

You are totally bored with nothing to do. You notice a pattern of spots on the wall in front of you
and begin to dwell on them. There is no obvious pattern of symmetry. With time this becomes very
grating, and you contemplate adding more spots to satisfy your quest for balance. For this exercise
you are to resolve this situation with a computer program.

Given an array of spots with coordinates in the range from−20,000 to 20,000, determine the fewest
additional spots needed to generate a pattern with some symmetry. The symmetry can be around
a point or across a line. If the symmetry is around a point, the point does not need to be a spot in
the data, or even a point with integral coordinates. If the symmetry is across a line, the line may
be at any angle. The coordinates of the additional spots may or may not be within the −20,000 to
20,000 limits.

Input

Each input will consist of a single test case. Note that your program may be run multiple times
on different inputs. The first line of input will consist of a single integer n (1 ≤ n ≤ 1,000)
indicating the number of spots. Each of the next n lines will hold two space-separated integers x
and y (−20,000 ≤ x, y ≤ 20,000), which are the coordinates of a spot. The locations of all spots
are guaranteed to be unique.

North American Invitational Programming Contest 2016 Problem G: Symmetry 13

Output

Output a single integer, indicating the smallest number of spots which need to be added so that all
of the spots are symmetric about some point, or about some line.

Sample Input 1 Sample Output 1

4
0 0
1000 0
0 1000
1000 1000

0

Sample Input 2 Sample Output 2

11
0 0
70 100
24 200
30 300
480 400
0 100
0 200
0 400
100 0
300 0
400 0

6

North American Invitational Programming Contest 2016 Problem G: Symmetry 14

Problem H
Jewel Thief

The grand museum has just announced a large exhibit on jewelry from around the world. In the
hopes of his potential future prosperity, the world-renowned thief and master criminal Edward
Terrenando has decided to attempt the magnum opus of his career in thievery.

Edward is hoping to purloin a large number of jewels from the exhibit at the grand museum. But
alas! He must be careful with which jewels to appropriate in order to maximize the total value of
jewels stolen.

Edward has k knapsacks of size 1, 2, 3, up to k, and would like to know for each the maximum
sum of values of jewels that can be stolen. This way he can properly weigh risk vs. reward when
choosing how many jewels to steal. A knapsack of size s can hold items if the sum of sizes of
those items is less than or equal to s. If you can figure out the best total value of jewels for each
size of knapsack, you can help Edward pull off the heist of the century!

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The first line of input will consist of two space-separated integers n and k, where
n (1 ≤ n ≤ 1,000,000) is the number of jewels in the exhibit, and k (1 ≤ k ≤ 100,000) is the
maximum size of knapsack available to Edward. The next n lines each will describe a jewel. Each
line will consist of two space-separated integers s and v, where s (1 ≤ s ≤ 300) is the size of the
jewel, and v (1 ≤ v ≤ 109) is its value. Each jewel can only be taken once per knapsack, but each
knapsack is an independent problem.

Output

Output k integers separated by whitespace. The first integer should be the maximum value of
jewels that will fit in a knapsack of size 1. The second should be the maximum value of jewels in
a knapsack of size 2, and so on.

North American Invitational Programming Contest 2016 Problem H: Jewel Thief 15

Sample Input 1 Sample Output 1

4 9
2 8
1 1
3 4
5 100

1 8 9 9 100 101 108 109 109

Sample Input 2 Sample Output 2

5 7
2 2
3 8
2 7
2 4
3 8

0 7 8 11 15 16 19

Sample Input 3 Sample Output 3

2 6
300 1
300 2

0 0 0 0 0 0

North American Invitational Programming Contest 2016 Problem H: Jewel Thief 16

Problem I
Tourists

In Tree City, there are n tourist attractions uniquely labeled 1 to n. The attractions are connected
by a set of n− 1 bidirectional roads in such a way that a tourist can get from any attraction to any
other using some path of roads.

You are a member of the Tree City planning committee. After much research into tourism, your
committee has discovered a very interesting fact about tourists: they LOVE number theory! A
tourist who visits an attraction with label x will then visit another attraction with label y if y > x
and y is a multiple of x. Moreover, if the two attractions are not directly connected by a road the
tourist will necessarily visit all of the attractions on the path connecting x and y, even if they aren’t
multiples of x. The number of attractions visited includes x and y themselves. Call this the length
of a path.

Consider this city map:

Here are all the paths that tourists might take, with the lengths for each:
1→ 2 = 4, 1→ 3 = 3, 1→ 4 = 2, 1→ 5 = 2, 1→ 6 = 3, 1→ 7 = 4,
1→ 8 = 3, 1→ 9 = 3, 1→ 10 = 2, 2→ 4 = 5, 2→ 6 = 6, 2→ 8 = 2,
2→ 10 = 3, 3→ 6 = 3, 3→ 9 = 3, 4→ 8 = 4, 5→ 10 = 3

To take advantage of this phenomenon of tourist behavior, the committee would like to determine
the number of attractions on paths from an attraction x to an attraction y such that y > x and y is a
multiple of x. You are to compute the sum of the lengths of all such paths. For the example above,
this is: 4 + 3 + 2 + 2 + 3 + 4 + 3 + 3 + 2 + 5 + 6 + 2 + 3 + 3 + 3 + 4 + 3 = 55.

North American Invitational Programming Contest 2016 Problem I: Tourists 17

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The first line of input will consist of an integer n (2 ≤ n ≤ 200,000) indicating
the number of attractions. Each of the following n−1 lines will consist of a pair of space-separated
integers i and j (1 ≤ i < j ≤ n), denoting that attraction i and attraction j are directly connected
by a road. It is guaranteed that the set of attractions is connected.

Output

Output a single integer, which is the sum of the lengths of all paths between two attractions x and
y such that y > x and y is a multiple of x.

Sample Input 1 Sample Output 1

10
3 4
3 7
1 4
4 6
1 10
8 10
2 8
1 5
4 9

55

North American Invitational Programming Contest 2016 Problem I: Tourists 18

Problem J
Whiteboard

Mr. Turtle loves drawing on his whiteboard at home. One day when he was drawing, his marker
dried out! Mr. Turtle then noticed that the marker behaved like an eraser for the remainder of his
drawing.

Mr. Turtle has a picture in his head of how he wants his final drawing to appear. He plans out
his entire drawing ahead of time, step by step. Mr. Turtle’s plan is a sequence of commands: up,
down, left or right, with a distance. He starts drawing in the bottom left corner of his whiteboard.
Consider the 6× 8 whiteboard and sequence of commands in the first diagram. If the marker runs
dry at timestep 17, the board will look like the second diagram (the numbers indicate the timestep
when the marker is at each cell). Note that it will make a mark at timestep 17, but not at timestep
18.

Mr. Turtle wants to know the earliest and latest time his marker can dry out, and he’ll still obtain
the drawing in his head. Can you help him? Note that timestep 0 is the moment before the marker
touches the board. It is valid for a marker to dry out at timestep 0.

Input

Each input will consist of a single test case. Note that your program may be run multiple times
on different inputs. The input will start with a line with 3 space-separated integers h, w and n
(1 ≤ h,w, n ≤ 1,000,000, w · h ≤ 1,000,000) where h and w are the height and width of the
whiteboard respectively, and n is the number of commands in Mr. Turtle’s plan.

The next h lines will each consist of exactly w characters, with each character being either ‘#’ or
‘.’ . This is the pattern in Mr. Turtle’s head, where ’#’ is a marked cell, and ‘.’ is a blank cell.

North American Invitational Programming Contest 2016 Problem J: Whiteboard 19

The next n lines will each consist of a command, of the form “direction distance”, with a single
space between the direction and the distance and no other spaces on the line. The direction will
be exactly one of the set {up,down,left,right}, guaranteed to be all lower case. The dis-
tance will be between 1 and 1,000,000 inclusive. The commands must be executed in order. It is
guaranteed that no command will take the marker off of the whiteboard.

Output

Output two integers, first the minimum, then the maximum time that can pass before the marker
dries out, and Mr. Turtle can still end up with the target drawing. Neither number should be larger
than the last timestep that the marker is on the board, so if the marker can run to the end and still
draw the target drawing, use the last timestep that the marker is on the board. If it’s not possible to
end up with the target drawing, output -1 -1.

Sample Input 1 Sample Output 1

6 8 5
........
...#....
########
#..#...#
#..#####
#.......
up 3
right 7
down 2
left 4
up 3

20 20

North American Invitational Programming Contest 2016 Problem J: Whiteboard 20

Sample Input 2 Sample Output 2

6 8 5
........
........
###.####
#......#
#..#####
#.......
up 3
right 7
down 2
left 4
up 3

17 17

Sample Input 3 Sample Output 3

3 3 2
...
.#.
...
up 2
right 2

-1 -1

Sample Input 4 Sample Output 4

2 2 4
..
..
up 1
right 1
down 1
left 1

0 1

North American Invitational Programming Contest 2016 Problem J: Whiteboard 21

This page is intentionally left blank.

Problem K
YATP

This is Yet Another Tree Problem. You are given a tree, where every node has a penalty and every
edge has a weight. The cost of a simple path between any two nodes is the sum of the weights of
the edges in the path, plus the product of the penalties of the endpoint nodes. Note that a path can
have 0 edges, and the cost of such a path is simply the square of the penalty of the node.

For each node, compute the smallest cost of any path starting at that node. The final answer is the
sum of all of these minimum costs.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on
different inputs. The first line of input will consist of a single integer n (1 ≤ n ≤ 200,000), which is
the number of nodes. The next line will consist of n space-separated integers p (1 ≤ p ≤ 1,000,000),
which is the penalty of each node, in order. Each of the following n− 1 lines will consist of three
space-separated integers i, j and w (1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, 1 ≤ w ≤ 1,000,000), specifying
an edge between nodes i and j with weight w.

Output

Output a single integer, which is the sum of all of the lowest cost paths for each node.

Sample Input 1 Sample Output 1

5
9 7 1 1 9
3 2 8
5 2 10
4 3 10
2 1 2

63

North American Invitational Programming Contest 2016 Problem K: YATP 23

This page is intentionally left blank.

