
2022 North American Qualifier
Solution Outlines

The Judges

Feb 5, 2023

NAQ 2022 Solution Outlines 1 / 32



Problem A - Beast Bullies

Problem
Given N animals of various strengths, an attack is where the weakest
animal is targeted by some other animals, and will be driven away
unless enough animals come to its defense. Each animal wishes to not
be driven away, but also wants as many other animals to be driven
away as possible. If all animals act optimally, how many remain?

Initial Observations
When N = 2, since all animal strengths are unique, the weaker animal
will always be driven away.
When N = 3, if the two weaker animals cannot match the stronger
animal in strength, they will both be driven away. However, if they do
match the stronger animal, then from the analysis when N = 2, we
see that no animals are driven away in this case.
This motivates looking at the animals from strongest to weakest.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 2 / 32



Problem A - Beast Bullies

Solution
Sort the animals in decreasing order of strength, maintaining the
current stable set of animals, which starts with just the strongest
animal.
Looping over the other animals in decreasing order, maintain a
candidate set of animals. The moment that the candidate set of
animals has sum of strengths greater than or equal to the current
stable set, merge that set into the stable set and reset the candidate
set.
The answer is the final size of the stable set.
Note that the explicit sets do not need to be maintained, it suffices to
maintain the number of animals and the sum of the strengths.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 3 / 32



Problem A - Beast Bullies

Proof of Optimality
We can prove the correctness of this algorithm using a proof by strong
induction on the number of times the stable set is updated.
Since we are consistently removing the weakest animal, we can instead
consider the reverse process and figure out which subset of the
strongest animals left remaining can be added to the set.
By the induction hypothesis, since the existing set of animals is stable,
if more animals are to be added to the stable set, the new animals
that are added must sum in strength to be at least the sum in
strength of the current stable set.
This stable set must necessarily be minimal in size.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 4 / 32



Problem B - Birthday Gift

Problem
Count the number of integers equivalent to b (mod 225) that have
exactly a digits and have no two adjacent digits being equal.

Initial Observations
If we build the number digit by digit, we can update the residue
modulo 225 by multiplying by 10 and then adding the digit.
Therefore, there is an O(a) DP where the state is the residue of the
current number modulo 225 and the last digit used in the number.
This DP has 2250 states.
We can optimize this DP using exponentiation by squaring, but this
requires multiplying matrices that are 2250× 2250 in size, which is
too slow.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 5 / 32



Problem B - Birthday Gift

Solution
Note that 225 = 25× 9. The residue of a number modulo 25 only
depends on the last two digits.
Therefore, if we manually loop over all possible candidates for the last
two digits, we can reduce the number of states to 90 - the last digit of
the number and the current residue modulo 9.
We still need to optimize the DP with exponentiation by squaring.
The complexity is O(903 log a).

Problem Author: Travis Meade NAQ 2022 Solution Outlines 6 / 32



Problem C - Class Field Trip

Problem
Given two strings of lowercase letters, print the sorted version of the
two strings, concatenated with each other.

Solutions
Because the strings are short, there are many different viable solutions.
Solution 1: Concatenate the two strings into some list of characters,
sort the list with a library sort, and print it out.
Solution 2: Find the smallest character over both strings, print it, and
remove it. Repeat until both strings are empty.
Solution 3: Maintain a frequency count of each letter, then loop over
the letters in order, printing each letter the number of times it appears,
Solution 4: Do the ‘merge’ step in merge sort on the two strings to
sort them.

Problem Author: Ben Reed NAQ 2022 Solution Outlines 7 / 32



Problem D - Ghost Leg

Problem
Read a “Ghost Leg” permutation and output the permuted order.

Solution
The Ghost Leg input is really just a step-by-step description of the
items that must be swapped in order to create the permutation.
Read n and m from the first line of input.
Create an array of integers, P , of length n and initialize it such that
Pi = i .
For each of the m remaining lines, read a and swap Pa with Pa+1.

Output the elements of P.

Problem Author: Bob Roos NAQ 2022 Solution Outlines 8 / 32



Problem E - MazeMan

Problem
Given a maze with multiple "dots" and multiple "entrances" from which
each player can enter through, calculate the minimum number of players
necessary to eat all the reachable dots, and how many dots are not
reachable because they are walled off.

Solution
Set a global counter to be zero.
As you iterate from entrance ’A’ to entrance ’W’, check how many
"dots" you can eat (e.g, you may use BFS/DFS or DSU to do this).
If the count is nonzero, increment the global counter by one and
replace each visited "dot" with "space".
Report the global counter together with a count of the remaining
"dots".

Problem Author: Bob Bradley NAQ 2022 Solution Outlines 9 / 32



Problem F - Metronome

Problem
A metronome ticks 4 times for every 1 revolution of the winding key.
For a given song of a given length, how many revolutions must the key
be wound?

Solution
Just divide the input by 4.
Be sure to use reals, not integers.
In Java:
Scanner sc = new Scanner(System.in);
PrintStream ps = System.out;
ps.println(sc.nextDouble()/4.0);

Problem Author: Larry Pyeatt NAQ 2022 Solution Outlines 10 / 32



Problem G - Movie Night

Problem
You want to go with the movies with some of your friends. However, a
given person will only go to the movies if their best friend also goes.
Compute the number of distinct sets of friends that can go to the
movies with you.
The set must be nonempty, and because the number of sets can be
very large, the answer should be printed modulo 109 + 7.

Initial Observation
Treat the people as vertices and best friendship as a directed
relationship.
This graph is known as a functional graph, where every node has
outdegree exactly one.

Problem Author: Brent Yorgey NAQ 2022 Solution Outlines 11 / 32



Problem G - Movie Night

Functional Graphs
Functional graphs always contain at least one cycle. To see this, pick
an arbitrary starting vertex and go to the vertex it is pointing to. By
the pigeonhole principle, after repeating this N + 1 times, you will
have seen some vertex twice. This vertex must be in the cycle.
Functional graphs can contain multiple cycles. Different cycles are
independent.

Solving The One-Cycle Case
What happens if the graph has exactly one cycle?
Every vertex in the cycle must be selected.
What about vertices that are not in the cycle but point towards it?

Problem Author: Brent Yorgey NAQ 2022 Solution Outlines 12 / 32



Problem G - Movie Night

Solving The One-Cycle Case, Continued
For now, we’ll consider a vertex v that points directly to a vertex in
the cycle, and only consider vertices that eventually point to v .
Let f (i) be the number of valid subsets of vertices that contain vertex
i , considering only vertices that eventually point to i .

We can show that f (i) = 1+
∏
g∈P

f (g), where P is the set of parent

vertices of i - vertices that directly point to i .
If person i does not go, then no one who considers person i their best
friend can go and there is only one valid such subset in this case.
If person i does go, then everyone who considers person i their best
friend can independently attend or not.

Therefore, for a given cycle, the number of nonempty subsets that are
valid is

∏
v∈S

f (v), where S is the set of all vertices not in the cycle that

point directly at the cycle.
Problem Author: Brent Yorgey NAQ 2022 Solution Outlines 13 / 32



Problem G - Movie Night

Full Solution
It remains to solve the problem when there are multiple cycles in the
graph.
Let g(C ) be the number of possibly empty valid sets of vertices only
considering vertices in the weakly connected component C . This is
equal to the quantity computed prior, incremented by one to handle
the case where we don’t select any vertices.
The total number of valid sets is therefore the product of g(C ) over
all weakly connected components in the original graph, minus one to
exclude the empty set.

Problem Author: Brent Yorgey NAQ 2022 Solution Outlines 14 / 32



Problem H - Platform Placing

Problem
Given a sorted sequence x of n integers, compute the maximum
possible sum of a sequence y of n nonnegative real numbers that
satisfy the following constraints:

s ≤ yi ≤ k
yi+yi+1

2 ≤ xi+1 − xi for 1 ≤ i < n.

Output −1 if no such sequence exists.

Initial Observations
If xi+1 − xi < s, then no such sequence exists.
Otherwise, a sequence is guaranteed to exist by setting all yi = s.
All yi values, except for y1 and yn, are present in two inequality
constraints relating to some xi .

Problem Author: Travis Meade NAQ 2022 Solution Outlines 15 / 32



Problem H - Platform Placing

Solution
Set all yi = s.
In increasing order of i , increase yi as much as possible while still
respecting the inequality constraints.
We can show that this is correct by an exchange argument with an
optimal solution, as the prefix sum of y must always stay ahead of the
prefix sum of an optimal sequence.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 16 / 32



Problem J - Room Evacuation

Problem
Given a room with some people and some exits, where people can only
move one square at a time and no square can have more than one
person in it at a time, what is the maximum number of people that
can exit in T time units?

Motivating the Solution
Imagine that we look at the room over the different time units - for
every person that escapes, these people must be at pairwise disjoint
locations at every point in time.
Modeling this as a graph, we’re looking for the maximum number of
vertex-disjoint paths, which can be modeled as the maximum number
of edge-disjoint paths in a similar graph.
This problem can be solved by computing a maximum flow.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 17 / 32



Problem J - Room Evacuation

Solution
We’ll construct a graph with T + 1 layers. Each layer will effectively
simulate the state of the room at that time.
For each layer, we construct 2RC nodes, two nodes for each location
in the room. We’ll define an ‘in’ node and an ‘out’ node, and connect
the ‘in’ node to the ‘out’ node with an edge of capacity one.
Between each layer, we’ll connect the ‘out’ node of the previous layer
with the ‘in’ node of the next layer if the nodes correspond to the
same or adjacent locations.
Connect every ‘out’ node of every exit with the sink, and the source to
the ‘in’ node of every location with a person in layer 0.
The maximum flow on this graph is the answer.

Problem Author: Travis Meade NAQ 2022 Solution Outlines 18 / 32



Problem K - Smallest Calculated Value

Problem
Given three integers and the four basic arithmetic operators with no
precedence, what’s the smallest nonnegative number you can
compute?

Solution
Compute a list of all the possibilities of the first two.
For each, figure out the possibilities with the last.
Find the smallest ≥ 0.

Problem Author: Howard Whitston NAQ 2022 Solution Outlines 19 / 32



Problem K - Smallest Calculated Value

Solution in Java
private List<Integer> ops(int x, int y) {

ArrayList<Integer> result = new ArrayList<Integer>(4);
result.add(x+y);
result.add(x-y);
result.add(x*y);
if(x%y==0) result.add(x/y);
return result;

}
// some code omitted
ArrayList<Integer> values = new ArrayList<Integer>(16);
for(int x: ops(a, b)) values.addAll(ops(x, c));
int smallest = Integer.MAX_VALUE;
for(int x: values) if(x>=0 && x<smallest) smallest = x;
ps.println(smallest);

Problem Author: Howard Whitston NAQ 2022 Solution Outlines 20 / 32



Problem L - Spidey Distance

Problem
In the spidey distance metric, traveling from (x , y) to a horizontally or
vertically adjacent point is 1 unit, but traveling to a diagonally
adjacent point is 1.5 units.
Consider all points at most s spidey distance units away from the
origin, and count these S . Of these points, count the number of them
T that are also in the taxi (Manhattan) distance t.
Compute T

S in reduced form. One way to do this is to find the
greatest common factor and divide both by the greatest common
factor. We can use the Euclidean algorithm for this.

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 21 / 32



Problem L - Spidey Distance

Observations
To find either area of points, we notice that there is symmetry over
both the x and y axis, so we can compute for one quadrant, making
sure to properly add in the points on an axis, multiply by 4 and add
the origin.
The taxi distance in the first quadrant will be a triangle, specifically
the points under the line y = −x + t. We can calculate this with
t(t−1)

2 . Note: this does not include either axis.
For an individual point, it is inside the taxi distance if x + y ≤ t.
The spidey distance will always contain the points in the taxi distance
of the same value, and will (with values greater than 3) have additional
points further out from the origin. This is not obvious to calculate.
For an individual point, it is inside the spidey distance if
min(x , y) · 1.5+max(x , y)−min(x , y) ≤ s.

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 22 / 32



Problem L - Spidey Distance

Observations, continued
If s is at least as large as t, then all taxi points are contained in the
spidey area, so we can compute the two and reduce.
If s is less than

⌊
t
3

⌋
then all the spidey points are contained inside the

taxi points, and the answer is 1.
If the distance values fall between these, then things are a bit more
challenging, as there are spidey points that are outside the taxi
distance, and there are taxi points that are outside the spidey distance.
Notice that on the diagonals, for sufficiently large spidey distances,
starting with the axis, you move two columns further before the next
diagonal out starts to have points on it. So taxi points outside the
spidey distance can be calculated.
Notice that the number of spidey points on a diagonal with
y -intercept of y , outside the triangular area is s − 3(y − s).

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 23 / 32



Problem L - Spidey Distance

Solution Approaches
We can iterate over every point in the first quadrant where x or y is
inside the spidey distance and test if the point is inside the spidey
distance, and then inside the taxi distance. This will be too slow as it
is O(s2).
We can iterate over every point in the first quadrant on the band of
points outside the triangular portion of the spidey distance. This is
still O(s2).
We can calculate the number of spidey points in a row/column by
starting at s and tracing the border around, then comparing the values
to the taxi distance on that row/column. This is O(s).

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 24 / 32



Problem L - Spidey Distance

Solution Approaches, continued
We can calculate the number of spidey points in a row/column by
using the formula and applying as many diagonal steps as possible,
then comparing this data to the taxi area on that row/column. This is
O(s). (Solution 1)
We can use the observations above about the number of points on a
diagonal that are or are not part of the spidey distance, and the
knowledge of the y -intercept to know if these points are part of the
taxi distance. This is O(s). (Solution 2)
We can look for a closed form for the number of spidey points, and
then find a way to count the number of taxi points outside the spidey
area. The closed form is hard to find, but it can be computed in O(1).

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 25 / 32



Problem L - Spidey Distance

Solution 1
For each x in [0, s], we’ll find the maximum possible y that we can
reach in spidey distance.
If we fix the number of diagonal steps we do and perform those first,
note that the region we can reach if we only go up and to the right is
a right triangle.
As the number of diagonal steps increases, the length of the
hypotenuse decreases but its distance from the origin increases.
With this observation, we can find all such y values in O(s) time by
looping over the number of diagonal steps in decreasing order and only
setting the maximum y value for x-coordinates we have not yet solved
for.

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 26 / 32



Problem L - Spidey Distance

Solution 1, continued
By symmetry, we can compute the minimum possible y values
attainable. We can reflect across the y -axis to compute this
information for negative values of x .
We can now loop over x from −t to t, counting the number of values
inside the bounding box.
We can compute the exact probability by taking the GCD of these two
values to get the probability as a fraction in simplest form.

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 27 / 32



Problem L - Spidey Distance

Solution 2
To calculate the number of spidey points in the first quadrant, we will
count the number of points in the taxi distance of s and add to that
the total: for(i=1; s-3*i > 0; i++) total += s-3*i.
To calculate the number of taxi points we will count the number of
points in the taxi distance of s and add to that the total: for(i=1;
s+i <= t; i++) total += s-3*i;

Remember the number of points in the taxi distance of s is s(s−1)
2 .

To get the total number of points, we take either of the above, add s
(for a single axis), multiply that value by 4 (for the four quadrants),
and then add 1 for the origin.
Once we have these two values, we reduce to get our answer.

Problem Author: Dwayne Towell NAQ 2022 Solution Outlines 28 / 32



Problem M - Toll Roads

Problem
Given an undirected weighted graph and multiple queries of pairs of
vertices, for each pair of vertices report two values: w , the minimum
weight such that it is possible to travel between the two vertices using
edges with weight at most w , and k , the number of vertices it is
possible to reach starting at either vertex and using edges with weight
at most w .

Solving the Q = 1 case
Sort the edges in the graph, and use a disjoint set data structure
maintaining the size of each component.

Problem Author: Nick Wu NAQ 2022 Solution Outlines 29 / 32



Problem M - Toll Roads

Solution 1 - Augmenting the Q = 1 solution
It is too slow to naively check each query after sorting the edges and
adding them incrementally.
To do this more quickly, for each vertex, we annotate which queries
use a given vertex as an endpoint. When we merge two components
together, we check if both components share a common query, and
merge these annotations otherwise.
When checking and merging the annotations, operate on the smaller
set.

Problem Author: Nick Wu NAQ 2022 Solution Outlines 30 / 32



Problem M - Toll Roads

Solution 2 - Minimum Spanning Tree + Disjoint Set
Note that edges which are not in the minimum spanning tree are
irrelevant to any query.
We can therefore compute the minimum spanning tree first and then
for every query, compute the maximum weight edge on the path
between those two vertices. We can do this with an augmented sparse
table in the same way that we can compute LCA of two nodes quickly.
After this, we can run the Q = 1 solution again but check the size of
the connected component after merging in all edges with weight at
most w .

Problem Author: Nick Wu NAQ 2022 Solution Outlines 31 / 32



Problem M - Toll Roads

Solution 3 - Parallel Binary Search
An alternate solution to the Q = 1 case is to binary search for the
minimum possible value of w using a disjoint set to check whether two
vertices are connected.
We can extend this solution when Q is large by doing parallel binary
search, where we simultaneously binary search for the answer to all
queries at the same time.
To do this, in a single iteration of binary search, establish candidate w
values for each query that we are checking for. Add the edges in
sorted order by weight and when all edges with a specific weight have
been added, check all queries that have candidate w value equal to
that weight and adjust the binary search boundaries accordingly.

Problem Author: Nick Wu NAQ 2022 Solution Outlines 32 / 32


