Periodic Strings

Define a k-periodic string as follows:
A string \boldsymbol{s} is \boldsymbol{k}-periodic if the length of the string $|\boldsymbol{s}|$ is a multiple of \boldsymbol{k}, and if you chop the string up into $|\boldsymbol{s}| / \boldsymbol{k}$ substrings of length \boldsymbol{k}, then each of those substrings (except the first) is the same as the previous substring, but with its last character moved to the front.

For example, the following string is 3-periodic:

abccabbcaabc

The above string can break up into substrings $a b c, c a b, b c a$, and $a b c$, and each substring (except the first) is a right-rotation of the previous substring ($\mathrm{abc} \rightarrow \mathrm{cab} \rightarrow \mathrm{bca} \rightarrow \mathrm{abc}$).

Given a string, determine the smallest \boldsymbol{k} for which the string is k-periodic.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The single line of input contains a string $s(\mathbf{1} \leq|s| \leq 100)$ consisting only of lowercase letters.

Output

Output the integer \boldsymbol{k}, which is the smallest \boldsymbol{k} for which the input string is \boldsymbol{k}-periodic.

Sample Input	Sample Output
aaaaaaaa	1
abbaab.baab.ba	2
abcdef	6
abccabbcaabc	3

