2018 ICPC Southeast USA Regional Contest

Rectangles

You are working on a new graphics system, which has added a new feature. Whenever you draw a figure, all the pixels in that figure flip from white to black, or from black to white. This image is what happens when three overlapping rectangles are drawn on a white field:

Starting with a white field, given a series of axis-aligned rectangles, how many pixels end up black?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs.

Each test case will begin with a line with a single integer $\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 100,000)$ indicating the number of rectangles.

Each of the next \boldsymbol{n} lines will have four space-separated integers $\boldsymbol{x} \mathbf{1}, \boldsymbol{y} \mathbf{1}, \boldsymbol{x} \mathbf{2}$ and $\boldsymbol{y} \mathbf{2}$ $\left(0 \leq \boldsymbol{x} \mathbf{1}<\boldsymbol{x} \mathbf{2} \leq 10^{9}, 0 \leq \boldsymbol{y} \mathbf{1}<\boldsymbol{y} \mathbf{2} \leq 10^{9}\right.$) which represent opposite corners of a rectangle. The rectangle consists of all pixels (\mathbf{x}, \mathbf{y}) such that $\mathbf{x 1} \leq \mathbf{x}<\mathbf{x} \mathbf{2}$ and $\boldsymbol{y} \mathbf{1} \leq \mathbf{y}<\mathbf{y} \mathbf{2}$, so the area of the rectangle is $(x \mathbf{2}-\boldsymbol{x} \mathbf{1}) \times(\mathbf{y 2}-y \mathbf{1})$ pixels.

Output

Output a single integer, which is the number of pixels that are black after all of the rectangles are drawn on a white field.

Sample Input
Sample Output

