
Rhythm Flow

At first blush this problem looks like it’s a vanilla assignment problem (or maximum-weight bipartite match-
ing). But a naive implementation using e.g. the Hungarian algorithm won’t pass the samples: a maximum-
weight matching might violate the constraint that if two actual button presses are matched to expected
button presses, the earlier actual press must match the earlier expected press.

But this same restriction allows us to formulate a problem solution using dynamic programming. Let
dp[i][j] be the maximum possible score after matching the first i actual presses to the first j expected
presses. We can fill in this DP table row-by-row:

for j = 0 . . . n do
dp[0][j] = 0

end for
for i = 1 . . .m do

for j = 0 . . . n do
dp[i][j] = dp[i− 1][j] ▷ Do not match actual press i to any expected press
for k = j; k ≥ 1; k = k − 1 do

score = s(ai, ek) + dp[i− 1][k − 1] ▷ Match actual press i to expected press k
dp[i][j] = max(dp[i][j], score)

end for
end for

end for

where s(a, e) is the score listed in the table. The answer to the problem is then dp[m][n].

Improving the Time Complexity

The above algorithms runs in O(n2m) time, which is too slow. But notice that the above DP can be improved
to remove the inner loop completely. Instead of searching over all possible matches for actual press i, we can
reuse dp[i][j-1], which already computes the best possible score when matching all actual presses up to
press i with all expected presses 0 . . . j − 1:

for j = 0 . . . n do
dp[0][j] = 0

end for
for i = 1 . . .m do

dp[i][0] = 0
for j = 1 . . . n do

score1 = s(ai, ej) + dp[i− 1][j − 1] ▷ Match actual press i to expected press j
score2 = dp[i][j − 1] ▷ Match actual press i to some expected press < j
score3 = dp[i− 1][j] ▷ Don’t match actual press i at all
dp[i][j] = max(score1, score2, score3)

end for
end for

This solution runs in time O(nm). (Note also that it’s not necessarily to keep the entire DP table in memory:
you only need the current and previous rows, though this optimization is not needed to fit within the problem
memory limit.)

Alternate Solution

Instead of removing the inner loop of the O(n2m) solution, it’s also possible to optimize it by noticing that
it never makes sense to match actual button press i to expected button press k once the distance between
ai and ek is greater than 102 milliseconds:

for j = 0 . . . n do

1



dp[0][j] = 0
end for
for i = 1 . . .m do

for j = 0 . . . n do
dp[i][j] = dp[i− 1][j] ▷ Do not match actual press i to any expected press
for k = j; k ≥ 1; k = k − 1 do

if ai − ek > 102 then
break

end if
score = s(ai, ek) + dp[i− 1][k − 1] ▷ Match actual press i to expected press k
dp[i][j] = max(dp[i][j], score)

end for
end for

end for

The time complexity is now O(nm) (with a worst-case 102× constant factor due to the inner loop), which
is enough to solve the problem within the time limit.

2


