

2018 ICPC Southeast USA Regional Contest

Area Rug

The main room of your home is square, $n \times n$ feet. Unfortunately, the floor is dirty. You're a college student, so you hate to clean! Rather than clean it, you buy an area rug $s \times s$ feet square to cover some of the dirty spots.

Consider all of the ways that you could place the $s \times s$ area rug in the $n \times n$ room so that all $s \times s$ square feet of it cover part of the floor, axis aligned (no rotation). How many ways are there to cover a certain number of dirty spots?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs.

Each test case will begin with a line with two space-separated integers n ($1 \le n \le 1,000$) and s ($1 \le s \le \min[n,100]$), where n is the size of one side of the room, and s is the size of one side of the new area rug.

Each of the next n lines will have a string of exactly n characters, consisting only of 'C' (a clean spot on the floor) or 'D' (a dirty spot on the floor).

Output

For each count of dirty floor spots covered, from 0 to s^2 , if the number of ways of covering that many dirty spots with an area rug of size $s \times s$ is greater than 0, output the number of spots and the number of ways of covering them on a line, separated by a space. Output them in order, smallest number of dirty spots to largest.

Sample Input

Sample Output

10 5	0 16
DDDDDDDDD	5 16
DCCCCCCCD	9 4
DCCCCCCCD	
DDDDDDDDD	

In this example, there are 4 ways to cover 9 dirty spots (the corners), 16 ways to cover 5 dirty spots (the non-corner edges), and 16 ways to cover 0 dirty spots (the interior).